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Abstract 

Most of the metaheuristics can efficiently solve unconstrained problems; however, their performance may 

degenerate if the constraints are involved. This paper proposes two constraint handling approaches for an 

emerging metaheuristic of Cohort Intelligence (CI). More specifically CI with static penalty function approach 

(SCI) and CI with dynamic penalty function approach (DCI) are proposed. The approaches have been tested by 

solving several constrained test problems. The performance of the SCI and DCI have been compared with 

algorithms like GA, PSO, ABC, d-Ds. In addition, as well as three real world problems from mechanical 

engineering domain with improved solutions. The results were satisfactory and validated the applicability of CI 

methodology for solving real world problems. 
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1. Introduction 

In past few years, several metaheuristics have been proposed in the field of optimization. They 

include number of nature/bio-inspired optimization techniques such as Evolutionary Algorithms (EAs), 

Swarm Intelligence (SI), etc. Some of the SI techniques include Particle swarm optimization (PSO), 

Cuckoo Search Algorithm (CS) (Yang et al. 2009), Grey Wolf Optimizer (GWO) (Mirjalili et al. 2014), 

Artificial Bee Colony Algorithm (ABC) (Karaboga et al. 2011), Firefly Algorithm (FA) (Fister et.al. 2013), 

Ant Colony optimization (ACO) (Dorigo et al. 1997), etc. The evolutionary algorithms include Genetic 

Algorithm (GA) (Mitchell 1996), Differential Evolution (DE) (Storn et al. 2013; Qin et al. 2009), etc. 

Cohort intelligence (CI) algorithm is a socio-inspired optimization algorithm proposed by Kulkarni, 

Durugkar and Kumar in 2013. The algorithm mimics the self-supervised learning behavior of cohort 

candidates. The cohort here refers to a group of candidates interacting and competing with one 

another to achieve some individual goal, which is inherently common to all. So far, CI has been applied 

for solving several unconstrained test problems (Kulkarni et al. 2013). In addition, it was modified 

using a mutation approach, which expanded the search space and helped CI algorithm jump out of 

local minima. Also, CI and modified CI (MCI) were hybridized with K-means (Krishnasamy et al. 2014) 

and applied for solving several data clustering problems. The hybridized approaches exhibited 

exceedingly improved performance over the other contemporary algorithms such as K-means, K-

means++, GA, Simulated Annealing (SA), Tabu Search (TS), ACO, Honey-bee mating optimization 

(HBMO) algorithm, PSO, CI and MCI. The approach of CI was also applied for solving several cases of 

combinatorial problems such as 0-1 Knapsack problems (Kulkarni et al. 2016). The performance was 

comparable to other contemporary algorithm such as HS, IHS, NGHS, QICSA and QIHSA (Kulkarni et al. 

2016). The approach was also applied for solving traveling salesman problem (Kulkarni et al. 2017).  In 
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addition, CI was successfully applied for solving large sized combinatorial problems with applications 

to healthcare, sea-cargo mix problem associated with logistics as well as cross-border supply chain 

problems (Kulkarni et al. 2016). It is important to mention that CI could handle the constraints using a 

specially developed probability based approach.  

It is important to mention that the real world problems are constrained in nature. In order to make 

CI more generalized and powerful, constraint handling techniques need to be developed and 

incorporated into it. The most common approach to solve constrained optimization problems is by 

using a penalty functions methods. The penalty techniques transform a constrained problem into an 

unconstrained problem by penalizing the objective function when constraints are violated, and then 

minimize this penalized objective function using unconstrained optimization methods (Arora 2004). 

There are various penalty based constraint handling approaches developed such as static penalty 

approach (Homaifar et al. 1994), dynamic penalty approach (Joines & Houck 1994), annealing penalty 

approach (Michalewicz et al. 1994), superiority of feasible points (Powell et al. 1993), exact penalty 

function method (Huyer et al. 2003), barrier function methods (Arora 2004) etc. The barrier function 

methods are the simplest and popular method and are applicable only to the inequality constrained 

problems. Equality constraints may not be solvable using barrier function methods.  Annealing penalty 

are based on the ideology of simulated annealing algorithm. This penalty approach starts with the 

separation of all constraints in their sub groups as linear equations, linear inequalities, nonlinear 

equations and nonlinear inequalities then initiating the starting point that satisfies linear constraints 

and then the penalty is induced (Michalewicz et al. 1994). Static penalty approach implies penalty at 

a constant rate whenever the constraint is violated. Dynamic penalty approach implies penalty at a 

dynamic or increasing rate whenever the constraint is violated. Exact penalty function method is quite 

promising and effective method (Ma & Zhang 2015). To avoid the difficulty of adding a large value of 

penalty parameter in the function the exact penalty function is used (Lucidi & Rinaldi 2010). Exact 

penalty can be known as function having property of recovering an exact solution of the original 

problem for reasonable finite values of the penalty parameter (Ma & Li 2012).    

This paper investigates the constraint handling ability of CI with static penalty approach (SCI) and 

dynamic penalty approach (DCI). In this study, these two methods are preferred due to their 

advantages over other methods. The static penalty approach is characterized by its simplicity of 

formulation. Also, the convergence of the solutions is obtained at a faster rate as compared to other 

penalty function approaches. The dynamic penalty approach required small value of the penalty to be 

applied at the initial stages; however, as the iterations increase, the penalty also gradually increases 

(Mezura-Montes et al. 2011). The performance of the SCI and DCI approaches is tested by solving 20 

well-known test problems from continuous domain including Pressure Vessel Design problem, 

Tension-Compression Spring Design problem and Welded Beam Design Problem (Liang et al. 2006; 

Mezura-Montes et al. 2007). The solutions are compared with several existing techniques. In addition, 

the Springback effect problem occurring in the automotive punch plate, thinning in connector and 

thickening in tail cap during the process of deep drawing are successfully solved. This validated the 

applicability of the proposed SCI and DCI. 

The remainder of this paper is organized as follows: In Section 2, the framework of CI algorithm 

along with the SCI and DCI approaches are discussed. In section 3, SCI and DCI experimental 

evaluations and comparisons are provided. Then in section 4, application of these approaches in 

mechanical engineering is discussed. Finally, in section 5, conclusions and future work are provided. 
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2. Framework of Cohort Intelligence (CI) Algorithm 

Cohort Intelligence (CI) algorithm models the ability of candidates in a cohort to self-supervise 

and improve their independent behavior. Every candidate has its own qualities which defines its 

behavior. In every learning attempt, each candidate tries to improve its own behavior through learning 

which is possible through interaction and competition with other candidates. In other words, the 

qualities learned eventually make every candidate improve its behavior. After certain learning 

attempts, the behavior of every candidate saturates and makes entire cohort converge to a unique 

behavior. 

 

The Framework of the CI algorithm can be explained as follows: 

Step 1: The qualities of the candidates are referred to as the decision variables in the problem.  These 

qualities are randomly generated from within the associated sampling intervals. 

Step 2: The qualities of each candidate define the behavior of the candidate. The behavior of the 

candidate refers to the objective function is evaluated. 

Step 3: The probability of every candidate of being followed by other candidates is calculated on the 

basis of its behavior. The candidate with the best behavior has a maximum probability of being 

followed by other candidates and vice versa. 

Step 4: Each candidate employs roulette wheel approach to follow a behavior in the cohort and further 

improves its behavior by shrinking/expanding the sampling interval of every quality of the 

candidate being followed. This constitutes a single learning attempt. 

Step 5: The Algorithm is assumed to have converged on completion of the maximum number of 

learning attempts or the difference between the behavior of every cohort candidate is not 

very significant for successive considerable number of learning attempts. 

General Constrained optimization problem: 

Consider a general constrained problem (in the minimization sense) as follows: 

Minimize 𝑓(𝒙)  =  𝑓(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁)        (1) 

Subject to 𝑔𝑖(𝒙)  ≤  0, 𝑖 =  1 … . 𝑛 ℎ𝑗(𝒙)  =  0, 𝑗 =  1 … . 𝑚 𝛹𝑖𝑙𝑜𝑤𝑒𝑟   ≤   𝑥𝑖   ≤  𝛹𝑖𝑢𝑝𝑝𝑒𝑟   , 𝑖 =  1, … , 𝑁. 
In the context of CI, the variables 𝒙 =  (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑁) are considered as qualities. The CI 

optimization procedure begins with the initialization of number of candidates 𝐶, Sampling interval 𝛹𝑖  

for each quality 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁, learning attempt counter 𝑙 = 1, and setting up of static sampling 

interval reduction factor 𝑟 ∈ [0,1], convergence parameter ԑ. 

The penalty function approach is used to convert a constrained optimization problem into 

unconstrained optimization problem. Here we use two types of penalty function approaches. They are 

discussed below. 

a. Static Penalty Function Method (Homaifar et al. 1994) 

A simple method to penalize infeasible solutions is to apply a constant penalty to those solutions 

that violate feasibility in any way. The penalty function for a problem with equality and inequality 

constraints can be added to form the pseudo-objective function 𝑓𝑞 (𝒙) as follows 

  𝑓𝑞(𝒙) =  𝑓(𝒙) + ∑ 𝑞𝑖  × 𝑆 × (𝑔𝑖(𝒙))2𝑛𝑖=1 + ∑ 𝐵𝑗  × 𝑆 ×  ℎ𝑗(𝒙)𝑚𝑗=1    (2) 
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where   𝑓𝑞(𝒙) is the expanded penalized objective function 𝑆 is a penalty imposed for violation of a constraint 

 𝑞𝑖 = 1, if constraint 𝑖 is violated. 𝑞𝑖 = 0, if constraint 𝑖 is satisfied. 𝐵𝑗 = 1, if constraint 𝑖 is violated. 𝐵𝑗 = 0, if constraint 𝑖 is satisfied. 𝑛 and 𝑚 are the number of inequality and equality constraints, respectively. It is illustrated below with 

one inequality constraint. 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =  −𝑥1𝑥2                                                                (3) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥) = 𝑥1 + 𝑥2 − 4 ≤ 0 

 

The associated pseudo-objective function 𝑓𝑞(𝒙) is as follows: 𝑓𝑞(𝒙) =  −𝑥1 ∗ 𝑥2 + ∑ 𝑞𝑖  × 𝑆 × (𝑥1 + 𝑥2 − 4 )2𝑛𝑖=1                                        (4) 

If the constraint is violated the value of the 𝑞𝑖  will be 𝑜𝑛𝑒 else, it will be 𝑧𝑒𝑟𝑜. The value of penalty 𝑆 

is chosen based on preliminary trials of the algorithm. As the learning attempts increase the violation 

of the constraint may decrease and eventually optimum value for the problem is achieved. 

 

 

b. Dynamic Penalty Function (Joines & Houck 1994) 

In this constraint handling technique, the individuals are evaluated based on following formula: 𝑓𝑞(𝒙) =  𝑓(𝒙) + ∑ ((𝑞𝑘)𝛼  ×  𝑆) × (𝑔𝑖(𝒙))𝛽𝑛𝑖=1                                        (5) 

where 𝛼 𝑎𝑛𝑑 𝛽 are integer constants. 

In this approach, initially a very less penalty is applied for infeasible solutions and as the algorithm 

progresses, penalty is increased in every learning attempt. Here 𝑞𝑘 is the iteration number which is 

multiplied by penalty constant 𝑆; however, it is very sensitive to the parameters 𝛼 𝑎𝑛𝑑 𝛽 and the 

parameters need to be properly tuned based on the preliminary trials of the algorithm. In this 

technique, the penalty components have a significant effect on the objective function as they increase 

with every learning attempt. This approach is illustrated below with one inequality constraint. 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) =  −𝑥1𝑥2                                                            (7) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥) = 𝑥1 + 𝑥2 − 4 ≤ 0 

The associated pseudo-objective function 𝑓𝑞(𝒙) is as follows: 𝑓𝑞(𝒙) =  −𝑥1 ∗ 𝑥2 + ∑ (𝑞𝑘𝛼 × 𝑆) × (𝑥1 + 𝑥2 − 4 )𝛽𝑛𝑖=1                              (8) 

The value of penalty 𝑆 is set to be a constant; however, it is multiplied by the iteration number 𝑞𝑘𝛼 so 

as the iteration increases the value of the penalty also increases. Refer to Figure 1 for CI pseudo code 

for both the penalty function approaches. The iterative CI procedure solving penalized function 𝑓𝑞(𝒙) 

is discussed below. 

 

Step 1: The probability of selecting the behavior 𝑓𝑞(𝒙𝑐) of every associated candidate 𝑐 (𝑐 = 1, . . . , 𝐶) 

is calculated as follows: 

  𝑝𝑐 = 1/𝑓𝑞(𝒙𝑐)∑ 1/𝑓𝑞(𝒙𝑐)𝐶𝑐=1  𝑐 (𝑐 = 1, . . . , 𝐶)   (9) 

Step 2: Every candidate 𝑐 generates a random number 𝑟𝑎𝑛𝑑 ∈ [0,1] and using a roulette wheel 

approach decides to follow corresponding behavior 𝑓𝑞(𝒙𝑐~) and associated qualities 𝒙𝑐~ =𝑥1𝑐~, . . 𝑥𝑖𝑐~, … 𝑥𝑁𝑐~. The superscript ~ indicates that the behavior is selected by candidate c and not 
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known in advance. The roulette wheel approach could be most appropriate as it provides chance to 

every behavior in the cohort to get selected based on its quality as well as helps to incorporate 

uncertainty. In addition, it may increase the chances of any candidate to select the better behaviour 

as the associated probability stake 𝑝𝐶(𝑐 =  1, … , 𝐶) presented in Eq. (9) in the interval [0, 1] is 

directly proportional to the quality of the behaviour 𝑓𝑞(𝒙𝑐). In other words, better the solution, higher 

is the probability of being followed by the candidates in the cohort. 

Step 3: Every candidate 𝑐 (𝑐 = 1, . . . , 𝐶) shrinks the sampling interval 𝜳𝑖𝑐~
, 𝑖 = 1,2, . . 𝑁 associated 

with every variable 𝑥𝑖𝑐~, 𝑖 = 1,2, . . 𝑁 to its local neighborhood. This is done as follows: 

  𝜳𝑖𝑐~ = [𝑥𝑖𝑐~ − ‖𝛹𝑖𝑢𝑝𝑝𝑒𝑟−𝛹𝑖𝑙𝑜𝑤𝑒𝑟‖2 × 𝑟  , 𝑥𝑖𝑐~ + ‖𝛹𝑖𝑢𝑝𝑝𝑒𝑟−𝛹𝑖𝑙𝑜𝑤𝑒𝑟‖2 × 𝑟 ]                                (10) 

Step 4: Every candidate 𝑐 (𝑐 = 1, . . . , 𝐶) samples 𝑡 qualities from within the updated sampling interval 𝜳𝑖𝑐~
, 𝑖 = 1,2, . . 𝑁 associated with every quality  𝑥𝑖𝑐~, 𝑖 = 1,2, . . 𝑁 and computes a set of associated 𝑡 behaviors, i.e. 𝐹𝑞𝑐,𝑡 = {𝑓𝑞(𝑥𝑐)1, … , 𝑓𝑞(𝑥𝑐 )𝑗 , … , 𝑓𝑞(𝑥𝑐 )𝑡  } and selects the best behavior 𝑓𝑞∗(𝑥𝑐) from 

within. This makes the cohort available with 𝐶 updated behaviors represented as 𝐹𝑞∗𝐶 ={𝑓∗(𝑥1), … 𝑓∗(𝑥𝑐), … 𝑓∗(𝑥𝐶 ). 

Step 5: The cohort behavior could be considered saturated, if there is no significant improvement in 

the behavior 𝑓∗(𝒙𝑐) of every candidate 𝑐 (𝑐 = 1, . . . , 𝐶) in the cohort, and the difference between 

the individual behaviors is not very significant for successive considerable number of learning 

attempts, i.e. if  

1. ‖max(𝐹𝑞∗𝐶)𝑛 − max(𝐹𝑞∗𝐶)𝑛−1 ‖  ≤  𝜖, and 

2. ‖min(𝐹𝑞∗𝐶)𝑛 − min(𝐹𝑞∗𝐶)𝑛−1 ‖  ≤  𝜖, and 

3. ‖max(𝐹𝑞∗𝐶)𝑛 − min(𝐹𝑞∗𝐶)𝑛 ‖  ≤  𝜖, every candidate 𝑐 (𝑐 = 1, . . . , 𝐶) expands the sampling 

interval 𝛹𝑖𝑐~, 𝑖 = 1, … , 𝑁 associated with every quality 𝑥𝑖𝑐~ , 𝑖 = 1, . . , 𝑁 to its original one 𝛹𝑖𝑙𝑜𝑤𝑒𝑟   ≤   𝑥𝑖   ≤  𝛹𝑖𝑢𝑝𝑝𝑒𝑟   , 𝑖 =  1 … , 𝑁. 

Step 6: If either of the two criteria listed below is valid, accept any of the 𝐶 behaviors from current set 

of behaviors in the cohort as the final objective function value 𝑓∗(𝒙) as the final solution and stop, 

else continue to Step 1. 

a) If maximum number of learning attempts exceeded.  

b) If cohort saturates to the same behavior (satisfying the conditions in Step 5) for significant 

number of times. 
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Fig. 1. Pseudo code of CI algorithm 

 

3. Experimental Evaluations 

Performance of SCI and DCI was tested by evaluation of 20 well known test problems (Liang J. J. 

et al. 2006, Mezura-Montes et al. 1994). The characteristics of these problems are listed in Table 1.  In 

addition to these test functions, mechanical engineering problems such as like tension compression 

string, welded beam design and Pressure vessel design were also solved. The SCI and DCI were coded 

in Matlab (R2014a) on windows 7 platform with I5-3470 Processor 3.2GHZ processor speed and 4GB 

RAM. Every problem was solved 20 times with the CI parameters chosen as follows: number of 

candidates 𝐶 = 5, reduction factor 𝑟 = 0.9 and convergence factor 𝜀 = 1𝐸 − 11. These parameters 

were chosen based on the preliminary trials of the algorithm. 

Table 1.  Features of Test Problems 

Problem Dimension Type LI* NI* LE* NE* 

G01 13 Quadratic 9 0 0 0 

G02 20 Non-linear 0 2 0 0 

G03 10 Polynomial 0 0 0 1 

G04 5 Quadratic 0 6 0 0 

Objective function 𝑓(𝒙), 𝒙 =  (𝑥1, . . . , 𝑥𝑁) 

Inequality Constraints 𝑔𝑖(𝒙) <  0, 𝑖 =  1, … , 𝑛 

Equality Constraints ℎ𝑗(𝒙) =  0,   𝑗 = 1, … , 𝑚 

Select number of candidates in Cohort (𝐶). 

Set sampling interval reduction factor (𝑟). 

Set convergence factor (𝜀), 

While (t < Max Learning attempts) or Convergence criterion 

Initialize qualities/attributes of each candidate by random numbers 

Evaluate the values constraints for each candidate 

If (Constraints Satisfied) 

Do not apply penalty 

Else  

Apply penalty function approach (Static or Dynamic) * 

End 

Evaluate fitness/behavior of every candidate. 

Evaluate probability associated with the behavior being followed by every 

candidate in the cohort by using equation  

Use roulette wheel approach to select behavior to follow by each candidate within 

Cohort (C). 

Every candidate will shrinks the sampling interval of every quality with respect to 

the followed behavior  

If (Convergence criterion met) 

Accept the current best candidate and its behavior 

Break 

End 

End 
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G05 4 Cubic 2 0 0 3 

G06 2 Cubic 0 2 0 0 

G07 10 Quadratic 3 5 0 0 

G08 2 Non-linear 0 2 0 0 

G09 7 Polynomial 0 4 0 0 

G10 8 Linear 3 3 0 0 

G11 2 Quadratic 0 0 0 1 

G12 3 Quadratic 0 1 0 0 

G14 10 Non-linear 0 0 3 0 

G15 3 Quadratic 0 0 1 1 

G17 6 Non-linear 0 0 0 4 

G18 9 Quadratic 0 13 0 0 

G24 2 Linear 0 2 0 0 

*LI: linear inequality; NI: nonlinear inequality; LE: linear equality; NE: nonlinear equality 

 

The performance of SCI & DCI is compared with the other methods in relevant literature including 

GA (Mezura-Montes and Coello 2005), PSO (Zavala et al. 2005), ABC (Karaboga et al. 2011) & Dynamic-

Differential Search algorithm (D-DS) (Jianjun et al. 2015, Mezura-Montes et al. 2007). These selected 

algorithms have their special qualities which led them in reaching the optimized solutions of the 

constrained test problems. GA is an optimization algorithm which is based on the Darwin’s theory of 
evolution. While solving constrained test problems using GA, Deb’s feasibility rules were used as a 
constraint handling technique which led them overcome infeasible solutions. Similarly, PSO is inspired 

by social behavior of bird flocking or fish schooling.  PSO also used Deb’s feasibility rules for handing 
constraints. ABC also solved the constrained optimization problems by using static penalty method as 

a constraint handling technique and this technique was found to be more compatible with the 

algorithm as it converged quicker and gave optimized solutions. Similarly, D-DS algorithm used 

dynamic penalty method as a constraint handling technique and the technique was found to be quite 

effective as the penalty was steadily increasing with increasing number of iterations. Experimental 

results of CI algorithm over 20 runs are provided in Table 2. 

 

Table 2.CI Performance of SCI and DCI 

Problem Optimum 
Best Solution 

by SCI 

SCI (Standard 

Deviation) 

Best Solution 

by DCI 

DCI (Standard 

Deviation) 

G01 −15.000 −14.9974 0.198195 −15.0000 0.1473 

G02 −0.803619 −0.80357 0.036091 −0.8036 0.0253 

G03 1.000 −1.00125 0.001112 −0.9997 0.0008 

G04 −30665.539 −30665.5 0.044975 −30665.5465 16.1751 

G05 5126.498 5119.139 40.41773 5121.1504 42.1847 

G06 −6961.814 −6961.81 1.52𝐸 − 05 −6961.8139 3.83𝐸 − 07 
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G07 24.306 24.30437 0.221551 24.3506 0.2135 

G08 0.095825 −0.09583 1.06𝐸 − 12 −0.0958 6.23𝐸 − 08 

G09 680.63 680.6726 0.259831 680.6738 0.2882 

G10 7049.25 7051.823 11.55862 7051.9256 15.3881 

G11 0.75 0.74965 0.001311 0.7489 0.0011 

G12 1.000 −1 1.63𝐸 − 12 −1.0000 0.0025 

G14 −47.7649 −47.735 0.20067 −47.7385 0.1630 

G15 961.7150 961.7152 0.009111 961.6403 0.2286 

G18 −0.8660 −0.86603 0.001221 −0.8660 0.0005 

G24 −5.5080 −5.50801 2.3𝐸 − 07 −5.5080 2.94𝐸 − 07 

PV* 6059.86326 5891.588 37.96514 5890.5657 40.4247 

TC* 0.0127048 0.012666 0.000453 0.0127 0.0001 

WBD* 1.748 2.221102 0.166765 2.2556 0.1044 

                *PV = Pressure Vessel Design, TC = Tension Compression Spring Design, WBD = Welded Beam Design. 

As exhibited in Table 2, SCI and DCI have found solutions in the close neighborhood of the reported 

optimum solution for most of the problems. The standard deviation (SD) for SCI and DCI was observed 

to be varying with the variation in the type of problem. It shows that the constraint handling 

techniques used to solve the problems with equality constraints is not so compatible with CI. Table 3 

shows the best solutions by SCI and DCI as well as some other methods. The results show that for 

problems which have comparatively larger feasible space (refer to Table 1) both SCI and DCI yielded 

comparative/superior results as compared to other algorithms.  

 

Table 3 Comparison of SCI & DCI with other algorithms 

Problem Optimum GA PSO ABC d- DS SCI DCI 

G01 −15.000 −15.000 −14.710 −15.000 −15.000 −𝟏𝟒. 𝟗𝟗𝟕 −𝟏𝟒. 𝟗𝟗𝟖 

G02 −0.804 −0.785 −0.420 −0.792 −0.804 −𝟎. 𝟖𝟎𝟒 −𝟎. 𝟖𝟎𝟒 

G03 1.000 1.000 0.765 1.000 𝑁𝐴 𝟏. 𝟎𝟎𝟏 𝟏. 𝟎𝟎𝟎 

G04 −30665.53 −30665.53 −30665.53 −30665.53 −30665.53 −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟎 −𝟑𝟎𝟔𝟔𝟓. 𝟓𝟎 

G05 5126.498 5174.492 5135.973 5185.714 5131.343 𝟓𝟏𝟏𝟗. 𝟏𝟑𝟗 𝟓𝟏𝟐𝟏. 𝟏𝟓𝟎 

G06 −6961.814 −6961.284 −6961.814 −6961.813 6961.814 −𝟔𝟗𝟔𝟏. 𝟖𝟏𝟎 −𝟔𝟗𝟔𝟏. 𝟖𝟏𝟎 

G07 24.306 24.475 32.407 24.473 24.315 𝟐𝟒. 𝟑𝟎𝟒 𝟐𝟒. 𝟑𝟓𝟏 

G08 0.096 0.096 0.096 0.096 0.096 𝟎. 𝟎𝟗𝟔 𝟎. 𝟎𝟗𝟔 

G09 680.630 680.643 680.630 680.640 680.630 𝟔𝟖𝟎. 𝟔𝟕𝟑 𝟔𝟖𝟎. 𝟔𝟕𝟒 

G10 7049.250 7253.047 7205.500 7224.407 7056.760 𝟕𝟎𝟓𝟏. 𝟖𝟐𝟑 𝟕𝟎𝟓𝟏. 𝟗𝟐𝟔 

G11 0.750 0.750 0.749 0.750 0.750 𝟎. 𝟕𝟓𝟎 𝟎. 𝟕𝟒𝟗 

G12 1.000 1.000 0.999 1.000 1.000 𝟏. 𝟎𝟎𝟎 𝟏. 𝟎𝟎𝟎 
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G14 47.765  𝑁𝐴 𝑁𝐴  𝑁𝐴  47.458 𝟒𝟕. 𝟕𝟑𝟓 𝟒𝟕. 𝟕𝟑𝟗 

G15 961.715  𝑁𝐴  𝑁𝐴  𝑁𝐴 961.715 𝟗𝟔𝟏. 𝟕𝟏𝟓 𝟗𝟔𝟏. 𝟔𝟒𝟎 

G17 8853.54  𝑁𝐴 𝑁𝐴   𝑁𝐴 8853.830  𝐃𝐍𝐂 𝟖𝟗𝟏𝟑. 𝟕𝟖𝟔 

G18 −0.866 −0.852 𝑁𝐴   𝑁𝐴 −0.866 −𝟎. 𝟖𝟔𝟔 −𝟎. 𝟖𝟔𝟔 

G24 −5.508 −5.508  𝑁𝐴 −5.507 −5.508 −𝟓. 𝟓𝟎𝟖 −𝟓. 𝟓𝟎𝟖 

PV 6059.863 𝑁𝐴  6059.714 6059.714  𝑁𝐴 𝟓𝟖𝟗𝟏. 𝟓𝟖𝟖 𝟓𝟖𝟗𝟎. 𝟓𝟔𝟔 

TC 0.013 𝑁𝐴  0.013 0.013  𝑁𝐴 𝟎. 𝟎𝟏𝟑 𝟎. 𝟎𝟏𝟑 

WBD 1.748  𝑁𝐴 1.725 1.725  𝑁𝐴 𝟐. 𝟐𝟐𝟏 𝟐. 𝟐𝟓𝟔 

*NA = Not Available, DNC = Did Not Converge 

 

It could be observed that SCI and DCI perform better than GA, PSO, D-DS and ABC algorithms. It is 

important to mention here that all these problems have inequality type of constraints. Table 4 shows 

the number of average Function Evaluations (FE) and average time required by SCI and DCI. The table 

exhibited that with problems with fewer constraints (G08 and G12) and fewer dimensions (G11) fewer 

average FE and time was required; however, with increasing number of constraints and the 

dimensions average FE and the computational time increased. 

 

Table 4 Function Evaluations & Time Required 

Problem FE by SCI 
Time (sec) required 

for SCI 
FE by DCI 

Time (sec) required 

for DCI 

 G01 5330 23.54 5210 38.69 

G02 7190 40.97 7100 82.90 

G03 1620 14.38 1220 13.29 

G04 4365 11.76 1290 4.099 

G05 4590 26.37 4145 35.22 

G06 2525 5.82 2185 3.47 

G07 5175 8.70 4185 7.02 

G08 1170 2.44 625 1.02 

G09 2800 8.11 2735 7.21 

G10 17980 57.24 13675 41.31 

G11 1240 3.12 1275 5.29 

G12 950 5.72 420 8.35 



10 

 

G14 4920 25.55 12375 98.52 

G15 2550 5.07 12195 37.83 

G17 DNC* DNC* 6475 23.87 

G18 1620 6.59 3210 18.38 

G24 1275 2.6 4345 13.65 

PV 7670 29.377 7455 27.4 

TC 3590 12.18 5235 18.85 

WBD 4865 13.41 4945 17.72 

DNC -Did Not Converge. 

 

As an illustration of working mechanism of CI, the convergence plots for SCI and DCI for solving 

problem G24 is shown in Figure 2(a) and 2(b). These plots indicate that initially, the behavior of the 

candidates in a cohort is different from one another; however, with increasing learning attempts, the 

candidates learn by following the behavior of one another, which further led to saturation of the 

solutions. After the first saturation, the sampling interval associated with every quality/variable is 

expanded in order to avoid premature convergence and hence find the global optimum. In most of 

the test problems, the solution obtained on every saturation were quite closer except G04 and G07. 

 

1. G24 Problem  

 

Figure 2(a). SCI-G24 
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Figure 2(b). DCI-G24 

 

4. Application of Cohort Intelligence 

Nomenclature 𝐵𝐻𝐹 Blank Holder Force (𝑁) 𝑅𝐷  Radius on Die (𝑚𝑚) 𝑅𝑃  Radius on Punch (𝑚𝑚) µ Coefficient of Friction 𝑑0 Blank Diameter (𝑚𝑚) 𝑑1 Finished Component Diameter (𝑚𝑚) 𝑃 Pressure Applied (𝑁/𝑚𝑚2) 𝑆0 Thickness of the Sheet (𝑚𝑚) 𝑆𝐷𝑀 Springback Displacement Magnitude  𝑧 Corner Radius (𝑚𝑚) 

In addition to the mechanical engineering design problems such as Pressure Vessel Design 

problem, Tension-Compression Spring Design problem and Welded Beam Design Problem, SCI and DCI 

were successfully applied to solve the Springback effect problem occurring in the automotive punch 

plate, thinning in connector and thickening in tail cap during the process of deep drawing (Kakandikar 

2014). Similar to the above test problems the SCI and DCI were coded in MATLAB (R2014a) on windows 

7 platform with intel I5-3470 Processor 3.2GHZ processor speed and 4GB RAM. Similar to the previous 
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problems, every problem was solved 20 times with the CI parameters chosen as follows: number of 

candidates 𝐶 = 5, reduction factor 𝑟 = 0.9 and convergence factor 𝜀 = 1𝐸 − 11. These parameters 

were chosen based on the preliminary trials of the algorithm. 

 

4.1. Springback Problem in Punch Plate: 

Springback is the elastic recovery of the component after the mechanical drawing process is 

completed. This occurs in all components where the elastic property of the material is present. 

Springback in any component is a defect which may vary the components dimensions from the desired 

one. So in any component it should be minimized. The Springback optimization problem of an 

automotive punch plate in the process of deep drawing is solved by SCI and DCI. The problem is linear 

with four variables and two inequality constraints. 

 

4.1.1. Component Description  

The component used is Punch Plate for the optimization process. The weight of the component is 90 𝑔𝑚𝑠. The material used for the component is SPCC steel which is a commercial quality cold rolled 

steel. Thickness of the material used for the process is 0.8 𝑚𝑚. Yield strength of the material used is 280 𝑀𝑃𝑎. The ultimate tensile strength of the material is 340 𝑀𝑃𝑎. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑆𝐷𝑀 = 0.0488 − 0.000133 × 𝐵𝐻𝐹 − 0.0167 ×  𝜇 + 0.00150 × 𝑅𝐷 + 0.00217 × 𝑅𝑃        (11) 
Subject to 2.5 <  𝑅𝐷  <  8 3 × 𝑅𝐷  >  𝑅𝑝  >  6 × 𝑅𝐷  

where  𝐵𝐻𝐹 =  𝜋4  (𝑑𝑜2 + 2𝑧)2 × 𝑃                                      (12) 

where 𝑃 = 2.5 𝑁/𝑚𝑚2. 
and  𝑅𝐷 = 0.035 [50 + (𝑑0 − 𝑑1)√𝑆0                          (13) 𝑅𝑃 = (3 𝑡𝑜 6) × 𝑅𝐷   
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4.1.2. Results obtained 
Table 5 (a) Results Obtained for Original 

Component (Kakandikar 2014) 

Original Component 

SDM 0.07420 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.886 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 
16.931 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 
14.38111 𝑚𝑚 

Coefficient of 

Friction (µ) 
0.15 

 

 

 

 

Table 5 (b) Results by SCI 

Modified Component by SCI 

SDM 0.06698 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.8490 𝑚𝑚 

Blank Holder 

Force  (𝐵𝐻𝐹) 

16.961 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 
8.5474 𝑚𝑚 

Coefficient of 

Friction (µ) 
0.1449 

 

 

 

 

Figure 3 (a). Springback displacement magnitude of the original 

component. 

Figure 3 (b). Springback displacement magnitude of modified 

component by SCI 
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Table 5 (c) Results by DCI 

Modified Component By DCI 

SDM 0.06466 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.858 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 
17.42 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 
8.6049 𝑚𝑚 

Coefficient of 

Friction (µ) 
0.14 

 

 

The original component design and associated formulation for the Springback displacement 

magnitude (SDM) is taken from (Kakandikar 2014). The problem (Eq 11 to 13) is solved using SCI and 

DCI. The SDM depends on blank holder force, coefficient of friction, radius on die and radius on punch. 

All these parameters finally depend on variables blank diameter 𝑑𝑜, finished component diameter  𝑑1 

and corner radius  𝑧. These parameters define the design of the component. The solutions using the 

SCI and DCI were then used to modify the original component design. 

It can be observed from the Table 5(a) that the SDM obtained in the original component is 0.07420 𝑚𝑚. The corresponding formability analysis solution performed in FromingSuite version 

2015.1.0 software in Figure 3(a). It is observed that the range of the SDM for the component varied 

from 0.002 𝑡𝑜 0.254 𝑚𝑚. The SDM obtained by SCI is 0.06698 𝑚𝑚 (refer to Table 5(b)) which 

indicates that the springback is reduced by 9.73%. Also it can be observed from Figure 3(b) that the 

reduced component SDM ranges from 0.039 𝑡𝑜 0.179 𝑚𝑚 which indicates that the average 

springback through overall component is reduced. Similarly the SDM obtained by DCI is 0.06466 𝑚𝑚 

(refer to Table 5(c)) indicates that the springback is reduced by 12.85%. Also it can be observed from 

Figure 3(c) that the SDM for the entire component ranges from 0.034 𝑡𝑜 0.164 𝑚𝑚 this indicates that 

the average springback of overall component is reduced.  

 

4.2. Problem of Thinning in Connector 

Thinning is the most common defect occurring in the components manufactured by deep drawing 

process. It is necessary to minimize thinning in order to maintain the quality of the product and further 

may reduce the production cost of the material and time. The final objective of deep drawing process 

in particular or of any sheet metal forming process in general is to produce good quality product, 

hence uniform thickness should be obtained throughout. The thinning minimization of connector in 

the process of deep drawing is solved by SCI and DCI. 

 

Figure 3 (c). Springback displacement magnitude of modified 

component by DCI 
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4.2.1. Component Description 

The weight of the original component was 20 𝑔𝑚𝑠. The thickness of the sheet was selected as 1 𝑚𝑚. 

The material used was D 513, SS 4010. The Yield strength of the material was 280 𝑀𝑃𝑎 while the 

ultimate tensile strength was 360 𝑀𝑝𝑎. 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑇ℎ𝑖𝑛𝑛𝑖𝑛𝑔 = 1.35 − 0.0400 × 𝐵𝐻𝐹 − 0.733 × 𝜇 − 0.0300 × 𝑅𝐷 − 0.0183 × 𝑅𝑃                   (14) 
Subject to 2 <  𝑅𝐷  <  4 3 × 𝑅𝐷  >  𝑅𝑝  >  6 × 𝑅𝐷  

where   𝐵𝐻𝐹 =  𝜋4  (𝑑𝑜2 + 2𝑧)2 × 𝑃                 (15) 

where 𝑃 = 2.5 𝑁/𝑚𝑚2 
and  𝑅𝐷 = 0.035 [50 + (𝑑0 − 𝑑1)√𝑆0                          (16) 𝑅𝑃 = (3 𝑡𝑜 6) × 𝑅𝐷 

 

4.2.2. Results Obtained 

 

 

Table 6 (a) Results Obtained for 

Original Component (Kakandikar 2014) 

 

Original Component  

Thinning 0.896 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.52 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 

3.89 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 

6.16 𝑚𝑚 

Coefficient of 

Friction (µ) 
0.15 

 

 

Figure 4 (a) Thickness distribution of the original component. 
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Table 6 (b) Results by SCI 

Modified Component by SCI 

Thinning 0.943 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.50 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 

4.01 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 

9.17 𝑚𝑚 

Coefficient of Friction (µ) 

0.005 

 

 

 

Table 6 (c) Results by DCI 

 

Modified Component by DCI 

Thinning 0.969 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
2.50 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 

4.25 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 

9.17 𝑚𝑚 

Coefficient of Friction (µ) 

0.005 

 

The original component design and mathematical formulation (Eq 14 to 16) for Thinning is taken 

from Kakandikar 2014. The 𝑇ℎ𝑖𝑛𝑛𝑖𝑛𝑔 is solved using SCI and DCI. The 𝑇ℎ𝑖𝑛𝑛𝑖𝑛𝑔 (refer to Eq 14) 

depends on blank holder force, coefficient of friction, radius on die and radius on punch. All these 

parameters finally depend on variables blank diameter 𝑑𝑜, finished component diameter  𝑑1 and 

corner radius  𝑧. These parameters define the design of the component. The solutions using the SCI 

and DCI are then used to modify the original component design. 

It can be observed from Table 6(a) that the 𝑇ℎ𝑖𝑛𝑛𝑖𝑛𝑔 value obtained in the original component is 0.896 𝑚𝑚. The corresponding formability analysis solution performed in FromingSuite version 

2015.1.0 software is shown in Figure 4(a). It is observed that the range of the thickness distribution in 

the overall component varies from 0.747 𝑡𝑜 1.110 𝑚𝑚. The thickness obtained from solving by SCI is 0.943 𝑚𝑚 (refer to Table 6(b)) indicates that the thickness is increased by 5.24%. also it can be 

Figure 4 (b) Thickness distribution of the modified component by SCI. 

Figure 4 (c) Thickness distribution of the modified component by DCI 
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observed from Figure 4(b) that the overall component thickness distribution range is reduced from 0.745 𝑡𝑜 1.109 𝑚𝑚 which indicates that the overall thickness is increased. Similarly, the thickness 

obtained by DCI is 0.969 𝑚𝑚 as shown in Table 6(c) this indicates that the thickness is increased by 8.45%. Also it can be observed from Figure 4(c) that the whole component thickness distribution 

ranges from 0.745 𝑡𝑜 1.109 𝑚𝑚. It indicates that the average thickness in overall component is 

increased. 

4.3. Thickening Problem in Tail Cap 

Thickening is one of the major defect occurring in the components manufactured by deep drawing 

process. It is necessary to minimize thickening in order to maintain the quality of the product. 

Determination of the thickness distribution and of the thinning of the sheet metal blank reduces the 

production cost of the material and time. The final objective of deep drawing process in particular or 

of any sheet metal forming process in general is to produce good quality product, hence uniform 

thickness should be obtained throughout. The thickening minimization of tail cap in the process of 

deep drawing was solved by SCI and DCI. 

 

4.3.1. Component Description 

The weight of the original component was found to be 20 grams. The thickness of the sheet selected 

is 1.2 𝑚𝑚. The material used is D 513, SS 4010. The Yield strength of the material is 250 𝑀𝑃𝑎 while 

the ultimate tensile strength was 350 𝑀𝑝𝑎. 𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 = 1.278 + 0.00180 × 𝐵𝐻𝐹 + 0.043 × 𝜇 − 0.0167 × 𝑅𝐷 − 0.0000 × 𝑅𝑃              (17) 
Subject to 2 <  𝑅𝐷  <  4 3 × 𝑅𝐷  >  𝑅𝑝  >  6 × 𝑅𝐷  

where 𝐵𝐻𝐹 =  𝜋4  (𝑑𝑜2 + 2𝑧)2 × 𝑃                 (18) 

where 𝑃 = 2.5 𝑁/𝑚𝑚2 
and  𝑅𝐷 = 0.035 [50 + (𝑑0 − 𝑑1)√𝑆0                          (19) 𝑅𝑃 = (3 𝑡𝑜 6) × 𝑅𝐷  
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4.3.2. Results Obtained 

 

 

 

Table 7 (b) Results by SCI 

 

Modified Component by SCI 

Thickness 1.276 𝑚𝑚 

Radius on Die  (𝑅𝐷) 

3.9 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 

23.67 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 

17.3 𝑚𝑚 

Coefficient of Friction (µ) 

0.005 

 

 

 

 

 

 

Table 7 (a) Results Obtained for Original 

Component (Kakandikar 2014) 

Original Component 

Thickness 1.309 𝑚𝑚 

Radius on Die  (𝑅𝐷) 

3.83 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 

21.99 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 

17.1 𝑚𝑚 

Coefficient of Friction (µ) 

0.15 

 

 

Figure 5 (a) Thickness distribution of the original component. 

Figure 5 (b) Thickness distribution of the modified component by SCI. 
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Table 7 (c) Results by DCI 

Modified Component 

Thickness 1.268 𝑚𝑚 

Radius on Die  (𝑅𝐷) 
3.85 𝑚𝑚 

Blank Holder Force  (𝐵𝐻𝐹) 
23.23 𝐾𝑁 

Radius on Punch  (𝑅𝑃) 
17.3 𝑚𝑚 

Coefficient of Friction (µ) 
0.005 

 

The original component design and associated formulation for 𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 is taken from 

Kakandikar 2014. The problem (Eq 17 to 19) was solved using SCI and DCI. The 𝑇ℎ𝑖𝑐𝑘𝑒𝑛𝑖𝑛𝑔 (refer to 

Eq 17) depends on blank holder force, coefficient of friction, radius on die and radius on punch. All 

these parameters finally depend on variables blank diameter 𝑑𝑜, finished component diameter  𝑑1 

and corner radius  𝑧. These parameters define the design of the component. The solutions using the 

SCI and DCI are then used to modify the original component design. 

It can be observed from the Table 7(a) that the thickness value obtained in the original component 

was 1.309 𝑚𝑚. The associated formability analysis performed in FromingSuite version 2015.1.0 

software in (refer to Figure 5(a)) indicates that the range of the thickness distribution in the overall 

component varies from 0.356 𝑡𝑜 1.378 𝑚𝑚. The thickness obtained by SCI is 1.276 𝑚𝑚 (refer to 

Table 7(b)). It indicates that the thickness is reduced by 2.52%. Also it can be observed from Figure 

5(b) that the whole component thickness distribution ranges from 0.357 𝑡𝑜 1.378 𝑚𝑚. It indicates 

that the average thickness through overall component is reduced. Similarly the thickness obtained by 

DCI is 1.268 𝑚𝑚 (refer to Table 7(c)). It indicates that the thickness is reduced by 3.13%. It can be 

observed from Figure 5(c) that the whole component thickness distribution ranges from 0.551 𝑡𝑜 1.378 𝑚𝑚, which indicates that the average thickness of the overall component is reduced. 

 

5. Conclusion and Future Works 

Two constraint handling approaches CI with static penalty approach (SCI) and CI with dynamic 

penalty approach (DCI) are successfully proposed and tested by solving 20 constrained test problems 

including pressure vessel design problem, tension-compression spring design and welded beam design 

problem. The results highlighted that the approach is significantly effective as compared to other 

algorithms solving these problems. The performance of the algorithm was satisfactory and competent 

in terms of the robustness, objective function value, and constraint satisfaction. The computational 

Figure 5 (c) Thickness distribution of the modified component by DCI. 
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cost, i.e. computational time and function evaluations were also reasonable. In addition, the 

Springback effect problem occurring in the automotive punch plate, thinning in connector and 

thickening in tail cap during the process of deep drawing are successfully solved. This validated the 

applicability of the proposed constrained CI versions, SCI and DCI.  

The computational time of CI can be further reduced by tuning the parameters such as size of 

cohort and sampling interval reduction factor. Also, the current version of SCI and DCI could solve 

problems with inequality constraints. An improvement in the existing approach is required to solve 

problems with equality constraints (Deshpande et al. 2013, Kulkarni & Tai 2011). 
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