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Data transferred in an electronic way is vulnerable to attacks. With an aim to protect data for secure com-
munication, a new Hybrid non pipelined Advanced Encryption Standard (AES) algorithm based on tradi-
tional AES algorithm with enhanced security features is proposed in this work. Abysmal analysis of the
AES algorithm implies that the security of AES lies in the S-box operations. This paper presents a new
approach for generating S-box values (modified S-box) and initial key required for encryption/encryption
(improved key generation) using PN Sequence Generator. The AES algorithmwith proposed modifications
shows significant improvement in the encryption quality as compared to traditional AES algorithm. The
traditional AES algorithm equipped with proposed novel modified S-box technique and improved key
generation technique gives an avalanche effect of 60% making it invulnerable to attacks. The proposed
design is synthesized on various Field Programmable Gate Array (FPGA) devices and compared to the
existing designs resulting in significant improvement in throughput. The proposed design is imple-
mented on Spartan6 FPGA device.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the expansion of data communications and its applica-
tions, there is a greater demand for increasing security systems
and devices to guard individual information sent over the trans-
mission channel. One of the most important techniques for secur-
ing the information is data encryption. Two kinds of cryptographic
techniques viz. symmetric and asymmetric cryptosystems have
already been created and are widely used (Mohammed et al.,
2011). Symmetric cryptography techniques, such as the Data
Encryption Standard (DES), Triple DES and Advanced Encryption
Standard (AES), utilize a key that is identical to the transmitter
as well as a receiver, for encrypting and decrypting the data trans-
ferred. The Asymmetric cryptography techniques, such as the
Rivest-Shamir-Adleman algorithm (RSA), Elliptic Curve Cryptogra-
phy (ECC) and Digital Signature Algorithm (DSA) make use of
different keys for encrypting and decrypting the data transferred
(Ebrahim et al., 2014). For securing large amount of data symmet-
ric cryptography is much more appropriate. The AES algorithm,
identified by the National Institute of Standards and Technology
(NIST) of the United States of America is approved to displace
DES (Fips-197, 2001).

Analysis of cipher strength is an essential part of security
assessment of any corporate or academic entity. Cipher analysts
have indicated that, out of 10 rounds of AES, about 8 rounds can
be brute forced successfully on today’s modern day hardware sys-
tems. The remaining 2 rounds cannot be broken in sufficient dura-
tion so as to make the attack on the system meaningful to the
attacker (Bogdanov et al., 2011). Due to the current trend of
increase in computational power, it may not be long that the entire
AES cipher would be de-ciphered under a given duration, and
hence compromise the system under test. Consequently extensive
research is being currently carried out to identify techniques to
further secure AES algorithm.

In this work, a PN Sequence Generator is used generation of
S-box values and the initial key required for Encryption/Decryp-
tion. A PN Sequence Generator gives distinct values which satisfies
the criterion for S-box values.

These techniques result in enhancing the security of the AES
algorithm as the feedback taps and seed value of the PN Sequence
Generator are not known to an attacker and will make the
g Saud
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algorithm invulnerable to brute force attack. The key contributions
of this work are as follows:

� A new approach for generation of S-box values using PN
Sequence Generator is presented. A PN sequence generator
generates a distinct sequence of random numbers based on
the initial seed value and feedback taps. This property of a PN
Sequence Generator is used for generating dynamic S-box
which enhances the strength of the cryptosystem.

� This work presents a PN Sequence Generator based design of a
Key Generation Block for generating initial key internally. A
new secure initial key generation technique eliminates the need
to apply the key externally and hence strengthens the modified
AES algorithm against attack as compared to traditional AES
algorithm.

� The techniques proposed in this paper are synchronized at both
encryption and decryption ends for a truly secure AES algorithm.

� The AES algorithm with modified S-box values and improved
key generation technique is tested on Strict Avalanche Criterion
for key sensitivity and an avalanche effect of 60% is achieved.

� Also the proposed design is optimized for speed and area and
compared with existing FPGA implementations. The implemen-
tation of AES algorithm with modified S-box values using Spar-
tan6 XC6SLX150-3FGG900 FPGA device achieves a throughput
of 3.039 Gbps with latency of 10 clock cycles.

Organization of this paper is as follows: Section 2 presents the
related work reported by various authors in the literature. Section 3
presents the description of AES algorithm. In Section 4, we propose
the techniques and explain in details the need and advantages of
generation of S-box values and initial key using PN Sequence
Generator for enhancing the security of AES algorithm. Section 5
presents simulation results and comparison of the results with
previous works reported in the literature. The conclusion of this
work is stated in Section 6.

2. Related work

AES implementations are categorized into software and hard-
ware implementations. Hardware implementation offers faster
speed, more security and consumes less power and thus is an
attractive choice as compared to software implementation
(Karthigai Kumar and Baskaran, 2010). Implementation of algo-
rithms on hardware can be achieved using either Application
Specific Integrated Circuit (ASIC) or Field Programmable Gate Array
(FPGA) devices (Gaj and Chodowiec, 2009). The authors presented
ASIC implementation of the cryptographic algorithm (Chih-Pin
et al., 2003; Liu and Luke, 2003). ASIC is an integrated circuit
designed for specific application and lacks flexibility. Moreover,
increased Non Recurring Engineering cost makes small volume
production unaffordable. As compared to ASIC, an FPGA device is
reconfigurable, efficient, offers more flexibility and requires less
time to market and hence FPGA is a popular choice for hardware
implementation (Alexandru and Fratila, 2011; Elbirt et al., 2001).
FPGAs also achieve much better performance than multi-core CPUs
for mathematical computations.

Significant amount of research has been done on hardware
implementation of AES algorithm using FPGA. These hardware
implementations aims at achieving increased throughput
increased operating frequency, decreased latency, lesser area and
lower power dissipation. The existing AES algorithm implementa-
tions are based on iterative structure and loop unrolled structures
to minimize area and maximize operating frequency or obtain a
trade-off between area and operating frequency. In iterative struc-
tures used for AES implementation only one cipher round is
unrolled and data is iteratively looped until the entire encryp-
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tion/decryption is completed (Chodowiec and Gaj, 2003; Farooq
and Aslam, 2017; Hongge et al., 2012; Iyer et al., 2011). This results
in reduced area utilization. In loop unrolled structures, all the
cipher rounds are unrolled and data is looped through the cipher
rounds sequentially until the entire encryption/decryption is com-
pleted (Ali et al., 2011; Standaert et al., 2003; Zhang and Parhi,
2004). The loop unrolled structure implementation, results in
increased speed and increased area utilization. The AES algorithm
can be implemented using non-pipelined and pipelined or sub-
pipelined techniques. The non-pipelined implementations result
in optimization of area at the cost of speed (Hussain and Jamal,
2012; Rais and Qasim, 2009a, 2009b). Whereas pipelined or sub-
pipelined implementations result in enhanced throughput with
increased area utilization as pipelining enables processing of mul-
tiple blocks simultaneously (Hammad et al., 2010; Qiang et al.,
2015; Qu et al., 2009; Wang and Ha, 2013).

Abysmal analysis of the AES algorithm implies that the S-box
substitution is the key component in creating confusion in the
encryption process and hence attempts are being made to improve
the quality of S-box. AES algorithm with S-box using GF(28) Galois
Field inversions based on polynomial basis, using composite field
arithmetic has been implemented by the authors, where the criti-
cal path delays are reduced using multiple stages of pipelining (Liu
and Parhi, 2008). The authors presented S-box generation using
combinational logic based truth table (Ahmad et al., 2010;
Rashidi and Rashidi, 2013). In these, techniques such as Positive
Polarity Reed-Muller structure or its variance, Sum of Product, Pro-
duct of Sum, Twisted Binary Decision Diagram and Binary Decision
Diagram are used. These techniques lead to high throughput but
very poor area cost ratio. Various memory based S-box implemen-
tations use BRAMs, ROMs and LUTs to generate S-box. The memory
based S-box generation results in reduced resource utilization but
due to unbreakable delay reduces the throughput (Granado-Criado
et al., 2010; Zhang and Wang, 2010). Chih Peng and Hwang (2008)
proposed a CAM-based SubBytes scheme to achieve increased
throughput AES architecture. The authors have presented design
of S-box using second-order reversible Cellular Automata and the
strength of S-box is evaluated using methods such as Bit Indepen-
dence Criterion (BIC), non-linearity, entropy and correlation immu-
nity bias (Gangadari and Rafi Ahamed, 2016).
3. Overview of AES algorithm

The AES algorithm performs operations on 128-bit plaintext
and uses identical key for encryption as well as decryption. The
AES algorithm processes facts obstruct of 128-bit parts and per-
forms 10, 12 and 14 rounds of operations employing a cipher secret
of duration 128-bits, 192-bits and 256-bits respectively. The algo-
rithm operates on data block comprised of a 4 � 4 byte matrix
known as the state. The essential procedures of AES algorithm
are carried out on the state. The operations of AES Encryption algo-
rithm with 128-bit key size are show in Fig. 1.

The AES-128 algorithm can be divided in three stages viz. add-
ing initial round key, rounds 1–9 and the final round. In the initial
round, the 128-bit plaintext is Exclusive-ORed with 128-bit initial
key. In each cipher round, SubBytes(), ShiftRows(), MixColumns()
and AddRoundKeys() transformations are performed on a two-
dimensional 4 � 4 array of bytes called the states. In the final
round, SubBytes(), ShiftRows(), and AddRoundKeys() operations
are performed on the states.
3.1. SubBytes transformation

The SubBytes transformation is the only non-linear and an
invertible bytes transformation. It makes AES potent enough
entation using FPGA with enhanced security features. Journal of King Saud
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Fig. 1. Block Diagram of AES Algorithm.
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against attacks. The SubBytes transformation substitutes each byte
from the state matrix with the value stored in S-box. The S-box is
formed of a lookup table of size 256 bytes. The S-box values are
calculated by taking multiplicative inverse in finite field GF(28)
where input element with all bits zero is mapped to itself and
applying affine transformation over GF(2). The multiplicative
inverse in finite field GF(28) is given by Eq.(1). The affine transfor-
mation over GF(2) is expressed in Eq.(2).

S yð Þ ¼ Affine transform y�1� � ð1Þ

Affine transform ¼

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

2
66666666666664

3
77777777777775

x

i7
i6
i5
i4
i3
i2
i1
i0

2
66666666666664

3
77777777777775

þ

0
1
1
0
0
0
1
1

2
66666666666664

3
77777777777775

ð2Þ
3.2. ShiftRows transformation

The ShiftRows transformation shifts rows 1, 2 and 3 of the State
matrix cyclically towards left by 1, 2 and 3 positions respectively.
The offset value is dependent on the row number. Thus the first
row remains unchanged. Cyclic rotation of rows imparts diffusion
Please cite this article in press as: Zodpe, H., Sapkal, A. An efficient AES implem
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property in AES algorithm. The ShiftRows transformation is repre-
sented in Fig. 2.

3.3. MixColumns transformation

The MixColumns transformation performs operations on each
column of the state matrix one at a time. It is a linear diffusion pro-
cess. Each column of the state matrix is considered as a four-term
polynomial over GF(28). The column is then multiplied by modulo
(y4 + 1) with a fixed polynomial a(y) given by Eq. (3),

a yð Þ ¼ 03f gy3 þ 01f gy2 þ 01f gy1 þ 02f g ð3Þ
Eq.(3) can also be represented as matrix multiplication as

Eq. (4):

p0 yð Þ ¼ a yð Þ � p yð Þ ð4Þ
and in matrix form as Eq. (5):

P0
0;c

P0
1;c

P0
2;c

P0
3;c

2
66664

3
77775

¼

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

2
6664

3
7775

P0;c

P1;c

P2;c

P3;c

2
6664

3
7775 ð5Þ
3.4. AddRoundKey transformation

The AddRoundKey transformation is the final transformation in
each round. In this transformation the round key obtained is
XORed with the state by bitwise operation. The Nb words from
key schedule of each Round Key are XORed with the columns of
the State as shown in Eq. (6),

P0
0;c; P

0
1;c;P

0
2;c;P

0
3;c

h i
¼ P0;c;P1;c;P2;c; P3;c½ � � Wround�Nb þ C½ � ð6Þ

where [Wround] are the words from key schedule, round is a value in
the range 0 6 round 6 Nr and Nr is the round number.

3.5. Key expansion module

The key expansion module generates 128-bit keys required for
each round of AES algorithm based on initial 128-bit key. The key
expansionmodule consists of SubBytes, ShiftRows and RoundConst
functions. SubBytes and ShiftRows functions are explained in sub-
sections 3.1 and 3.2. The RoundCons function performs a bitwise
XOR operation using a round constant array. Round constant array
contains values given by [xi�1, {00}, {00}, {00}] with xi�1 being
powers of x (x denoted as {02}) in the field GF(28). Thus each round
key is generated column wise using Eq.(7).

N r; cð Þ ¼
N r � 1; cð Þ þ sbox Rword N r � 1; c þ 3ð Þð Þ½ �
þRcon r � 1ð Þ c ¼ 1

N r; c � 1ð Þ þ N r � 1; cð Þ 2 6 c 6 4

8><
>:

ð7Þ
In Eq.(7), N(r, c) denotes cth 32-bit column of rth round key,

where 1 � c � 4 and r > 1. The initial key (r = 1) is XORed with
input 128-bit plaintext before the first round.

4. Design approach for AES algorithm with enhanced security

As compared to traditional AES algorithm, the proposed work
suggests technique to modify the S-box values using PN Sequence
Generator to improve the quality of encryption. The initial key
required for encryption/decryption is also generated using the PN
Sequence Generator instead of using a pre-defined key. In the pro-
posed work, 8-bit PN Sequence Generator is used for generating
entation using FPGA with enhanced security features. Journal of King Saud
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the S-box values and initial key. The key and plaintext sensitivity
tests are performed as per Strict Avalanche Criterion. The
avalanche values for traditional AES algorithm are compared with
avalanche values for AES algorithmwith modified S-box values. For
this comparison, pre-defined initial keys as well as initial keys gen-
erated using 8-bit PN Sequence Generator are considered. Further
the proposed design is synthesized using different FPGA devices
and comparison with existing FPGA implementations for speed
and area optimization is done.

4.1. S-box values generation using 8-bit PN Sequence Generator

A PN Sequence Generator is used to generate sequence of pseu-
dorandom binary numbers. A PN Sequence Generator is designed
using Linear Feedback Shift Register (LFSR) described by the Gener-
ator Polynomial. LFSR is shift register whose input bit is a linear
function of previous state and is generated by XORing selected bits
from all the bits of the shift register. The number of states
generated by the LFSR is determined by the feedback taps of the
Clock 

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q1 

Fig. 3. 8-Bit PN Sequence Generator.

Table 1
S-box for Encryption.

0 1 2 3 4 5 6 7

0 1d 0e 07 03 81 c0 60 30
1 64 b2 d9 ec 76 3b 9d 4e
2 a8 d4 6a b5 da 00 6d b6
3 d3 69 34 1a 0d 86 c3 e1
4 ed f6 7b bd 5e af d7 eb
5 11 08 84 c2 61 b0 d8 6c
6 9e cf e7 73 39 9c ce 67
7 5a 2d 96 4b 25 12 89 44
8 54 2a 95 ca e5 72 b9 dc
9 e6 f3 79 bc de ef f7 fb
a 32 99 cc 66 b3 59 ac 56
b 06 83 c1 e0 70 b8 5c ae
c 7d 3e 9f 4f a7 53 29 14
d f9 fc fe ff 7f 3f 1f 0f
e 1e 8f c7 63 b1 58 2c 16
f 88 c4 e2 71 38 1c 8e 47
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Generator Polynomial. The S-box of AES algorithm consists of
256 distinct 8-bit values. For generation of these S-box values,
8-bit PN Sequence Generator is used with maximal length feedback
taps to generate 28 � 1 = 255 random values across (01)h to (FF)h.
The value (00)h is randomly fed into the S-box. To generate, 8-bit
maximum length sequence, the Generator polynomial can be set
to a value from the following feedback taps viz. [8 6 5 2], [8 6 5
3], [8 6 5 4], [8 7 6 1], [8 6 4 3 2 1], [8 4 3 2], [8 7 6 5 2 1], [8 6
5 1], [8 5 3 1]. In this paper, the tap [8 6 5 4] is selected as a proof
of concept and the generator polynomial formed is represented in
Fig. 3.

As seen in Fig. 3. bits 8, 6, 5, 4 are XORed and feedback from
MSB side on each clock cycle resulting in cyclic shifting of previous
value. Thus, a random sequence with a very large repetition period
is obtained by combining elements from taps of the shift register
and giving a feedback to the input of the generator. The random-
ness in the output values generated from PN Sequence Generator
depends not only on the feedback taps but also on the non-zero ini-
tial 8-bit seed value given to the generator. The change in the seed
value shifts the starting value and changes the sequence of the
generated values. This results in generating sequence known only
to the designers. These values can then be used to form the
S-box. The invertible S-box is responsible to strengthen the AES
algorithm against various attacks. The lack of knowledge of the
taps and seed value selected to the attackers will make the AES
algorithm invulnerable to attacks.

The modified S-box in hexadecimal number system for encryp-
tion using feedback taps [8 6 5 4] and initial seed value as (1d)h is
shown in Table 1.

The individual bytes from the state matrix are replaced with the
corresponding value stored in modified S-box in SubBytes Trans-
formation. For this, the higher nibble and lower nibble of the
8 9 a b c d e f

98 4c 26 93 49 24 92 c9
27 13 09 04 82 41 a0 50
5b ad d6 6b 35 9a 4d a6
f0 f8 7c be df 6f b7 db
75 ba 5d 2e 17 8b 45 22
36 1b 8d c6 e3 f1 78 3c
33 19 8c 46 a3 d1 68 b4
a2 51 28 94 4a a5 52 a9
ee 77 bb dd 6e 37 9b cd
fd 7e bf 5f 2f 97 cb 65
2b 15 8a c5 62 31 18 0c
57 ab 55 aa d5 ea f5 fa
0a 85 42 21 90 c8 e4 f2
87 43 a1 d0 e8 f4 7a 3d
0b 05 02 01 80 40 20 10
23 91 48 a4 d2 e9 74 3a
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Table 2
S-box for Decryption.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 25 eb ea 03 1b e9 b0 02 51 1a c8 e8 af 34 01 d7
1 ef 50 75 19 c7 a9 e7 4c ae 69 33 59 f5 00 e0 d6
2 ee cb 4f f8 0d 74 0a 18 7a c6 81 a8 e6 71 4b 9c
3 07 ad a0 68 32 2c 58 8d f4 64 ff 15 5f df c1 d5
4 ed 1d ca d9 77 4e 6b f7 fa 0c 7c 73 09 2e 17 c3
5 1f 79 7e c5 80 ba a7 b8 e5 a5 70 28 b6 4a 44 9b
6 06 54 ac e3 10 9f a3 67 6e 31 22 2b 57 26 8c 3d
7 b4 f3 85 63 fe 48 14 89 5e 92 de 42 3a c0 99 d4
8 ec 04 1c b1 52 c9 35 d8 f0 76 aa 4d 6a 5a f6 e1
9 cc f9 0e 0b 7b 82 72 9d 08 a1 2d 8e 65 16 60 c2
a 1e da 78 6c fb 7d 2f c4 20 7f bb b9 a6 29 b7 45
b 55 e4 11 a4 6f 23 27 3e b5 86 49 8a 93 43 3b 9a
c 05 b2 53 36 f1 ab 5b e2 cd 0f 83 9e a2 8f 66 61
d db 6d fc 30 21 bc 2a 46 56 12 24 3f 87 8b 94 3c
e b3 37 f2 5c ce 84 90 62 dc fd bd 47 13 40 88 95
f 38 5d cf 91 dd be 41 96 39 d0 bf 97 d1 98 d2 d3
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individual entry from state matrix is taken as row and column
number respectively of the S-box. For example, the entry (76)h in
the state matrix will be replaced by (89)h i.e the value from 7th
row and 6th column.

The modified Inverse S-box generated for decryption is shown
in Table 2. As in encryption, for decryption also each byte in the
state matrix is substituted by the corresponding value of modified
Inverse S-box in InvSubBytes Transformation. For example, the
entry (89)h in the state matrix will be replaced by (76)h i.e the
value from 8th row and 9th column.
4.2. Key generation using 8-bit PN Sequence Generator

In the proposed work, the key generation block uses 8-bit PN
Sequence Generator to generate the initial key required for encryp-
tion/decryption process. The 8-bit PN Sequence Generator gener-
ates 255 values of 8-bit each which can be concatenated to form
the 128-bit initial key. The key generation block internally selects
the bytes for concatenation and form the 128-bit key.

The output states (each of 8-bit) of the PN Sequence Generator
are stored in the Look up Table (LUT) and are given as an input to
256:1 multiplexer as shown in Fig. 4. An 8-bit counter generates
the value of 8-bit select lines of the multiplexer. The counter is
designed to count 16 states so as to select 16 input bytes and form
the 128-bit (16 � 8) value at the output. Thus the key will consists
of 16 distinct bytes and a large number of distinct keys can be
obtained by changing the initial value of the counter for select
lines. These keys can then be dynamically applied to different
blocks of 128-bit plaintext from the entire message to be
encrypted. For example, setting feedback taps [8 6 5 4] and initial
seed value as (1d)h for the PN Sequence Generator and setting the
8-bits 

8-bits 

8-bits 

8-bits 

FFh

FEh

01h

00h

(3a)h

(74)h

(0e)h

(1d)h

8-bits 

8-bits 

PN Sequence 
Generator 

8-bit Counter Look Up 
Table 

Fig. 4. Key Generation Block.
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initial value of the counter for select lines as (00)h, (1d0e070
381c06030984c2693492492c9)h is the initial key generated for
encryption/decryption.

The generation of key using the key generation block eliminates
the need of using external predefined keys. Moreover, the gener-
ated key is dependent on the feedback taps and initial seed value
of the PN Sequence Generator and change in these parameters will
change the value of initial key. In case an adversary tries to deci-
pher the data using brute force attack, then due to use of a different
key for each message, the attacker will be unable to decrypt any
useful information from the message. Further, the brute force
attack will identify the initial key, but without the knowledge of
the S-box described in Section 4.1, the attacker will not be able
to decipher the input text. Thus these two modifications ensure a
very high encryption quality for the cipher.
5. Implementation

For hardware implementation of the proposed non pipelined
AES Algorithm, Xilinx Spartan6 – XC6vLX150 FPGA device is used.
The Xilinx ISE14.1 tool is used for Synthesis, simulation and gener-
ating the programmable file.

5.1. Performance evaluation parameters

The metrics for evaluating the performance of the proposed AES
Algorithm with modified S-box and improved key generation tech-
nique are as mentioned below.

� Avalanche Effect: The strength of the cryptosystem is tested on
the basis of Strict Avalanche Criterion (SAC). SAC is said to be
satisfied whenever complementing a single input bit results in
change of each of the output bits with a 50% probability. The
plaintext and key each of 128-bit are the inputs to the AES algo-
rithm. Thus, with a single bit complemented in plaintext or key,
the cipher text should change with a probability of 50% known
as Avalanche Effect.

� Throughput and Area: Hardware implementation of the algo-
rithm is evaluated on these two parameters. Throughput signi-
fies the number of bits processed per unit time and is specified
in Gbps or Mbps. The throughput is calculated using Eq.(8).

Throughput ¼ No:of bits processed � Fmax
Latency

ð8Þ

In Eq. (8), No. of bits processed in 128, Fmax is maximum fre-
quency reported by the tool and Latency is the number of clock
entation using FPGA with enhanced security features. Journal of King Saud
.07.002
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cycles after which output is generated. For Xilinx Spartan FPGAs,
area utilization is specified with respect to number of slices. Every
slice of Spartan6 FPGA contains four look-up tables (LUTs) and
eight storage elements.

5.2. Experimentation results

The proposed AES algorithm with modified S-box and improved
key generation technique is evaluated on various FPGA devices for
the performance parameters described in Section 5.1 using Xilinx
ISE 14.1. The plaintext and key sensitivity on the Strict Avalanche
Criterion is examined for 2048 variations using traditional AES
algorithm and AES algorithm with modifications described in this
work. From this, the average percentage avalanche value is
calculated.

Fig. 5 shows the comparison of Percentage Avalanche Effect for
traditional and modified AES algorithm for the initial key
(000102030405060708090a0b0c0d0e0f)h and plaintext (001122
33445566778899aabbccddeeff)h. As per the SAC, a single bit
change in the input should result in 50% change in output bits.
Thus, for calculating the avalanche effect all 128-bits from the ini-
tial key are complemented one by one and the corresponding
ciphertext with traditional AES and the modified AES are obtained.
The ciphertext generated for change in each input bit is compared
with the ciphertext obtained with initial key for traditional AES.
The count of number of bits changed in the two values is divided
by 128 and the value of percentage avalanche effect is calculated
for the corresponding input. These steps are also followed for gen-
erating the value of percentage avalanche effect for remaining
inputs of traditional AES and for modified AES. The plot for these
values is shown in Fig. 5. The overall percentage avalanche effect
is calculated by taking the count of the number of values increased
for modified AES. For the above mentioned set of key and plaintext,
an increased percentage avalanche effect of 58% is achieved with
modified AES algorithm. Similar experimentation is carried out
on different sets of plaintext and initial keys generated using the
technique discussed in Section 4.2. For 2048 variations in key
Fig. 5. Comparison of Percentage Avalanche Effec

Table 3
Synthesis result of Non-pipelined Modified AES algorithm on various FPGA devices.

Design Device Bitwidth (bits) No. of Slice

Proposed XC7VX690T 128 697
Proposed XC6VLX240T 128 4095
Proposed XC5VSX240T 128 3420
Proposed XC5VLX110T 128 3788
Proposed XC4VLX60 128 20,818
Proposed XC6SLX150 128 5566

Please cite this article in press as: Zodpe, H., Sapkal, A. An efficient AES implem
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and plaintext the percentage avalanche effect achieved varies in
the range from 53% to 61% for modified AES algorithm.

For performance evaluation, the proposed algorithm is synthe-
sized on various FPGA devices using Xilinx ISE14.1. The result
achieved for throughput and area is shown in Table 3.

The proposed non-pipelined design is synthesized using differ-
ent FPGA devices and its result are compared with existing non-
pipelined implementations as shown in Table 4. Latency of 10 is
considered while calculating the throughput of the proposed
design as it generates the output after every 10 clock cycles. The
proposed design achieves the highest throughput of 6.34Gbps on
XC7VX690T device with maximum clock frequency of 495.32
MHz. The number of slices used is only 0.47% of the total available
slices for the selected device. Compared to design (Hussain and
Jamal, 2012) which generates output after every 11 clock cycles,
throughput of the proposed design is improved by 1.2 times at
the expense of increased area usage by 1.67 times. Similarly an
improvement in throughput by 1.8 times is achieved at the cost
of 8.4 times more slice usage as compared to design in (Qiang
et al., 2015). Similar is the case with (Wang and Ha, 2013). The pro-
posed design improves the throughput by 1.8 and 1.33 times for
the devices XC6VLX240T and XC4VLX60 respectively as compared
to (Qiang et al., 2015). The implementation of proposed design on
hardware using Xilinx Spartan6 XC6SLX150 device gives a
throughput of 3.03 Gbps with maximum frequency of 237.45 MHz.

The comparison of synthesis result of the proposed non-
pipelined design with existing pipelined implementations is
shown in Table 5. Compared to the 6-stage pipelined design
(Wang and Ha, 2013), the proposed non-pipelined design improves
the throughput by 1.45 times and utilizes 0.69 times less area. The
throughput obtained by (Henezen and Fichtner, 2010) is more
compared to proposed non pipelined design at the expense of pipe-
lined design and four parallel Encryption datapath. However for
future consideration, introducing pipelining in the proposed design
will further improve the throughput of the proposed design. Reddy
and Praneeth (2011) have proposed design which uses complex
combinational logic for SubBytes transformation and is 3-stage
t for traditional and modified AES algorithm.

s Fmax (MHz) Throughput (Gbps) Mbps/Slice

372.98 4.34 6.22
463.42 5.93 1.44
199.18 25.50 7.45
232.30 29.73 7.84
214.48 2.74 0.13
237.45 3.03 0.54
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Table 4
Comparison of proposed design with existing non-pipelined designs.

Design Device No. of Pipeline stages Bitwidth (bits) No. of Slices Fmax (MHz) Throughput (Gbps) Mbps/Slice

Hussain and Jamal (2012))* Virtex7 Non-Pipelined 128 2444 456.00 5.30 2.17
Qiang et al. (2015) XC7VX690T Non-pipelined 128 486 322.58 3.44 7.08
Proposed XC7VX690T Non-pipelined 128 4089 495.32 6.34 1.55
Wang and Ha (2013)) XC6VLX240T Non-pipelined 128 15,612 14.69 1.88 0.12
Qiang et al. (2015) XC6VLX240T Non-pipelined 128 335 323.73 3.45 10.29
Proposed XC6VLX240T Non-pipelined 128 4095 463.42 5.93 1.44
Qiang et al. (2015) XC4VLX60 Non-pipelined 128 1975 192.68 2.06 1.04
Proposed XC4VLX60 Non-pipelined 128 20,818 214.48 2.74 0.13
Proposed XC6SLX150 Non-pipelined 128 5566 237.45 3.03 0.54

* The specific device used in (Hussain and Jamal, 2012) is not known.

Table 5
Comparison of proposed design with existing pipelined designs.

Design Device No. of Pipeline stages Bitwidth (bits) No. of Slices Fmax (MHz) Throughput (Gbps) Mbps/Slice

Wang and Ha (2013) XC6VLX240T 6 128 5927 319.29 40.87 6.90
Proposed XC6VLX240T Non-pipelined 128 4095 463.42 59.31 1.44
Henezen and Fichtner, (2010) XC5VSX240T 2 128 1499 233.00 119.30 8.06
Proposed XC5VSX240T Non-pipelined 128 3420 199.18 25.50 7.45
Reddy and Praneeth, (2011) XC5VLX110T 3 128 8896 202.26 25.89 2.91
Proposed XC5VLX110T Non-pipelined 128 3788 232.30 29.73 7.84

*Latency is not considered while calculating throughput, based on (Wang and Ha, 2013), (Henzen and Fichtner, 2010) and (Reddy and Praneeth 2011).
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pipelined. In the proposed non-pipelined design LUT based Sub-
Bytes transformation is used which results in improving the
throughput 1.15 times and utilizes 0.42 times less area as com-
pared to (Reddy and Praneeth 2011).

6. Conclusion

Encryption using hardware platforms is widely being used in
order to secure data and enhance throughput. In this paper, tech-
niques to enhance the encryption quality of AES algorithm and
its implementation on FPGA are proposed. First, the S-box values
in the modified AES algorithm are generated using PN Sequence
Generator. Second, the initial key required for encryption/decryp-
tion is also based on the output of PN Sequence Generator. The
result of encryption for modified AES algorithm is tested on the
Strict Avalanche Criterion for 2048 variations and the average per-
centage avalanche effect of 60% is achieved for modified AES algo-
rithm as compared to tradition AES algorithm. Thus the
modifications suggested, results in improved quality of encryption.
FPGAs are used for efficient hardware implementation of the mod-
ified AES algorithm. The results for throughput and area are com-
pared with existing non-pipelined and pipelined designs and are
found to achieve better performance.

The proposed design achieves a throughput of 59.3Gbps when
synthesized on XC6VLX240T device with a maximum frequency
of 463.42 MHz and 30.39 Gbps when implemented on XC6SLX150
with a maximum frequency of 237.45 MHz.
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