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Abstract. Cardiac event detection is one of the essential steps in cardiac signal processing, analysis and

disease diagnosis. Complete morphology of cardiac waves (P–QRS–T) extracted from the location of R-peak is

helpful for feature extraction of many applications related to cardiac diseases classification. Therefore cardiac

event detection is a prerequisite for reliable cardiac disease diagnosis, and hence it should be robust and time-

efficient so that it can be used for real-time signal processing. This work proposes a novel method for R-peak

detection using curvelet transform (CT). It demonstrates the use of curvelet energy with an adaptive threshold to

estimate the boundaries around R-peak. The exact R-peak locations are then detected from the input signal with

the predefined estimated boundaries. The proposed method is evaluated and analysed with all 48 records from

the MIT-BIH arrhythmia database. The experimental analysis result yields an average sensitivity of 99.62%,

average positive productivity of 99.74% and average detection error rate of 0.6%. The results obtained have

higher than or comparable indices to those in literature. Thus, the proposed system yields high accuracy, low

complexity and high processing speed.
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1. Introduction

Cardiac signals (ECG) are one of the most important

sources of diagnostic information. Thus, analysis of cardiac

signal contributes a significant role in diagnosing many

cardiac diseases like cardiac arrhythmia, cardiac ischemia,

heart rate variability, etc. Traditional technologies for car-

diovascular diagnoses used at home, clinics and hospitals

have remained interested area for researchers to improve

them [1]. The cardiac signal is a pseudo-periodic, non-

stationary signal that represents the electrical activity of a

human heart. For each heartbeat, it lasts roughly 0.8 s [2].

Every cardiac signal is roughly composed of series of

waveforms such as P wave, QRS complex and T wave. The

QRS complex, which represents ventricle depolarization, is

considered to be the most important waveform that leads to

the most distinguishing feature of ECG. The peak of this

complex is known as R-peak and is the most important

point in virtually every ECG algorithm [3]. The frequency

of P and T waves generally lies between 0.5 and 10 Hz, and

that of QRS complex ranges from 4 to 20 Hz [4]. The

diagnostic frequency range for ECG signal is considered to

be 0.05–150 Hz, with signal amplitudes lying between 0.1

and 5 mV. The main challenge in R-peak detection is a

presence of various types of noise whose frequency over-

laps with the frequency range of the ECG signal. Such

noises include noise from baseline wander, muscular

activities, movement artefacts, power line interference and

poor electrode contact [5, 6]. Frequencies of these noises

are as follows. (i) Power line interference has 50/60 Hz

with harmonics. It comes from the power line of ECG

signal measurement systems despite proper grounding. The

50/60 Hz notch filter can be used for rejecting the power-

line interference. (ii) Patients breathing and bad electrodes

mainly cause baseline wonder noise. Its frequency range is

usually below 0.8 Hz. The high-pass filter (HPF) with cut-

off frequency 0.8 Hz can be used to remove interference by

baseline wander. (iii) Muscular activities produce elec-

tromyogram (EMG) noise, and it appears as rapid fluctua-

tions that vary faster than ECG waves. Its frequency ranges

from dc to 10 kHz. The morphological filter for a unit

square-wave structuring with the best width of 0.07 s can

be used to remove the interference of EMG noise. (iv)

Motion artefacts that result from the motion of the electrode

to the patient’s skin. It can produce large amplitude signals

in ECG, and its duration is about 100–500 ms. The adaptive
*For correspondence

1

Sådhanå (2019) 44:47 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-018-1046-0Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-018-1046-0&amp;domain=pdf
https://doi.org/10.1007/s12046-018-1046-0


filters can be used to remove the interference of motion

artefacts. Mostly, ECG analysis is carried out in two steps.

(i) Filtering of an input signal, which uses digital filters like

a bandpass filter, notch filters, HPF and adaptive filters. In

the last two decades, linear/nonlinear transformations like

continuous wavelet transform (CWT), discrete wavelet

transform (DWT) [7], and HAAR wavelet transforms are a

very popular tool used for denoising of the ECG signals.

Empirical mode decomposition (EMD) method is also

represented as one of the denoising tools [8, 9]. (ii)

Detection of the most significant R-peak, which can be

performed using methods like windowing, applying a

threshold and Neural Network (NN)-based prediction sys-

tems. Two main problems that affect the techniques based

on such dual-stage framework are the following: (i) the

frequency band of QRS signal is different for different

subjects and even for different beats of the same subject

and (ii) the overlapping of frequency bands of the noise and

QRS complex [10]. Many kinds of literature proposed a

wavelet transform as a denoising tool implemented with

first-derivative, Hilbert transform and adaptive threshold

[3, 11–14].

QRS complexes characterized by steep-slope derivative-

based algorithms have frequently been used in the literature

[15]. Tomkins [16] proposed a real-time QRS detection

algorithm known as the P–T method based on digital

analysis of slope, amplitude and width. A special digital

BPF is used to reduce false detection of R-peak caused by

various types of interferences and achieves an accuracy of

99.3%. The P–T method appears to be the most common

benchmark given that it incorporates several functional

techniques, including LPF, HPF, derivative filtering,

squaring and windowing for the detection of R-peaks.

Meyer et al [17] have combined the P–T method and

wavelet to benefit from the strength of both methods, which

works in three aspects: (i) first, the prediction of both

algorithms always enters in determining the final decision;

(ii) secondly, a flexible combination scheme triggered by

two parameters allows balancing the influence of two

individual algorithms and (iii) third these parameters are

estimated in a data-driven way, allowing adoption of the

combination scheme to individual sets. Alexandridi et al

[18] substituted HAAR wavelet instead of BPF in the P–T

method and claimed that it is computationally simpler and

its hardware implementation is cheaper than that of BPF.

Xue et al [19] used an NN-based adaptive matched filtering

for QRS detection. They used an NN adaptive whitening

filter to model the lower frequencies of ECG, which are

inherently non-linear and non-stationary [19]. Ghaffari et al

[20] implemented a mathematics-based QRS detector using

CWT. They used the concept of dominant rescaled wavelet

coefficients (DRWC) to magnify the QRS and reduce the

effect of other R-peaks [20]. Slimane et al [21] proposed

QRS detection based on the EMD algorithm. This algo-

rithm requires HPF, signal EMD, a nonlinear transform,

integration and finally an LPF [21]. Augustyniak [22]

proposed a regression-based QRS detection algorithm that

is independent of sampling rate and robust to singular

outliers and high-frequency noise. Recently, Sharma and

Sharma [15] proposed a technique for QRS detection by

pre-processing the ECG signal using weighted total varia-

tion (WTV) denoising. The weights are chosen to give

preference to preserve QRS complex over P and T waves

while smoothing, reducing high-frequency noise as well as

low-frequency interference from P and T waves. Castells-

Rufas and Carrabina [10] developed a new filter called

MaMeMi filter and used it as a nonlinear HPF to remove

baseline wander. Wavelet Transform with modified Shan-

non Energy Envelop is used for rapid ECG analysis

[11, 12]. Ghongade and Ghatol [23] proposed a new tech-

nique based on wavelet energy histogram, first-order dif-

ferentiation, rectification and a fixed threshold. The average

detection error rate of the proposed method is found to be

2.26%. According to the author, this system is most suit-

able for offline signal analysis. Barhatte and Ghongade [24]

modified this algorithm by adding Hilbert transform after

first-order differentiation block and using adaptive thresh-

olds. The detection error rate obtained is 5.17%.

Literature review shows that the Wavelet Transform is

the most commonly used denoising technique for ECG

analysis. However, wavelet representation strongly depends

upon the choice of the mother wavelet. Therefore, in the

case of ECG signals that have varying morphologies, the

choice of an appropriate mother wavelet becomes difficult.

A curvelet transform (CT) is a new and effective spectral

transform that is becoming popular in denoising of the

signals. The CT is organized in such a way that most of the

energy of the object is localized in just a few coefficients

that can be quantified. Hence, we propose a novel method

for QRS complex detection using Fast Discrete Curvelet

Transform (FDCT). Here we have calculated the energy of

the signal from the curvelet coefficients called curvelet

energy, which is used to decide the threshold to locate the

boundaries around R-peak and to detect R-peak location.

In section 2, a brief introduction of the CT and curvelet,

energy is given. In section 3, the methodology of the pro-

posed system is discussed. In section 4, the experimental

analysis, results and comparison to other state-of-the-art

results are shown and discussed. Finally, in section 5, the

conclusion is given.

2. Materials and methods

2.1 CT

Candès and Donoho proposed the CT in 2000. It is derived

from the Ridgelet transform. The CT is a higher-dimen-

sional generalization of the wavelet transform designed to

represent complex data at different scales and different

angles. In other words, the CT is a multi-scale geometric

transform with strong directional character in which
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elements are highly anisotropic at fine scales with effective

support shaped according to parabolic scaling principle

length2 = width [25]. The most important property of cur-

velets is ‘sparsity’. Sparseness is measured by the rate of

decay of the m-term approximation (reconstruction of the

signal using m number of coefficients) of the algorithm.

Having a sparse representation offers improved compres-

sion possibilities, and also allows for improving denoising

performance [26, 27].

The curvelet elements can be obtained by parabolic

dilation, rotation and translation of specific function w [25].

They are indexed by scale parameter a, location b and

orientation h. It can be of the form as in Eq. (1):

wa;b;H xð Þ ¼ a�3=4w DaRh x � að Þð Þ ð1Þ

where

Da ¼ 1=a 0

0 1=
ffiffiffi

a
p

� �

;

Da is a parabolic scaling matrix and

Rh is rotation by h radians:
For constructing the curvelet functions, use the following

special window functions. Let us consider the scaled Meyer

windows (Eq. (2)) [28]:
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1 xj j � 1=3
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2
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h i
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>
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>
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ð2Þ

where v is a smoothing function satisfying the condition in

Eq. (3):

v xð Þ ¼ 0 x� 0;
1 x� 0;

�

v xð Þ þ v x � 1ð Þ ¼ 1; x 2 R: ð3Þ

In practical implementations, one would like to have

Cartesian arrays instead of the polar tiling of the fre-

quency plane. Cartesian coronae are based on concentric

squares (instead of circles) and shears. Therefore, the

construction of window functions on trapezoids instead

of polar wedges is desirable. For the transition of the

basic curvelet according to the new tiling, where rotation

is replaced by shearing [28], we use the form of curvelet

with a scale factor of 2j. The curvelet has useful geo-

metric features that obey a parabolic scaling relation that

says that at scale 2j, each element has an envelope that is

aligned along a ridge of length 2j/2 and width 2j with

j C 0 [29]. Equation (4) represents the form of the

curvelet:

wj;0;0 nð Þ ¼ 2�3j=4W 2�jn1

� �

V
2 j=2j jn2

n1

� 	

ð4Þ

with the window function ‘W’ and with a nonnegative

window ‘V’ with compact support in [–2/3, 2/3].

The CT of function f(x) is given by the convolution

integral as follows:

cj;l;k ¼ f ;wj;l;k


 �

¼
Z

f xð Þŵj;0;0dx: ð5Þ

2.2 Curvelet energy

To calculate curvelet energy, the CT is applied to a segment

of eight samples. The curvelet coefficients obtained for a

segment are squared and summed to get the energy of one

sample. The same procedure is repeated for the samples in a

frame of ECG signal. Curvelet coefficients are obtained

once using curvelet as a function parameter at the finest

level and secondly wavelet as a function parameter at the

finest level. Then the percentage energy is obtained by

taking the ratio of these two energies. Figure 1a and b

shows the corresponding percentage energy obtained for

the input ECG signal.

2.3 Cardiac event (R-peak) detection

Cardiac event detection of ECG is carried out in four dif-

ferent steps:

1) obtaining curvelet energy for the input ECG,

2) deciding the threshold to extract the Region of Interest

(ROI),

3) detecting R-peak location and

4) removal of false R-peaks.

2.3a Deciding threshold: It is clear from figure 1 that

energy amplitudes corresponding to QRS complex of the

input ECG signal are more significant than the remaining

part of the signal. Even the noisy signal in figure 1b shows

significant peaks for the QRS complex. Also, the energy

levels corresponding to QRS complex vary a lot from one

subject to other. Setting a fixed threshold for R-peak

detection is difficult in such cases. Hence, an adaptive

amplitude threshold method is used to decide a fixed

threshold of a particular subject. The procedure to decide a

threshold is explained further.

The energy curve shown in figure 1 is inverted and

normalized as in figure 2, so that the proper thresholds can

be sets. Now two thresholds are sets, where lower threshold

(T1) is set to 1% of the maximum amplitude of energy

signal and the upper threshold (T2) is set to 20% of the

maximum amplitude of energy signal as in Eq. (6):

T1 ¼ 0:01max Eð Þ; T2 ¼ 0:2max Eð Þ ð6Þ
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Local maxima counts above this thresholds T1 and T2 are

obtained as N1 and N2, respectively. If N1 and N2 are not

equal, thresholds are changed according to Eqs. (7) and (8):

T1 ¼ T1 þ delta� að Þ; T2 ¼ T2 � delta� að Þ ð7Þ

where delta is the difference between two thresholds and a
is a constant of proportionality in which the threshold

should increase or decrease.

delta ¼ T2 � T1 and a ¼ 0:2: ð8Þ

The stopping criterion to update the thresholds is N1

becoming equal to N2. At this point, the final threshold T is

set to T1. Now, this threshold is used to extract the required

ROI of input ECG.

2.3b Deciding ROI: The threshold T obtained from the afore-

mentioned procedure is again compared to the amplitude of

energy. If the amplitude of energy is greater than threshold T,

then set values of a signal (P) as 1 for approximately 0.2 s for

next 70 samples; else set them to zero. The resulting signal

from this action is shown in figures 3 and 4. The ON period

of signal (P) gives us required ROI as in figures 3(a) and 4(a).

The ROI signal is multiplied by the input ECG signal to

extract the region around R-peak as in figures 3(b) and 4(b).

2.3c Detecting R-peak locations: R-peaks can be obtained

by detecting maxima of every extracted region around the

R-peak. However, it does not work for all the records as

R-peaks can be inverted R-peaks in some cases. As shown

in figures 4(a) and (b), the input ECG consists of positive

R-peaks as well as inverted R-peaks. Hence, the procedure

to detect exact R-peak location is explained here.

1. For every extracted R-peak region the minimum and

maximum amplitudes are located, and corresponding

Figure 1. Curvelet energy plot for ECG.

Figure 2. Inverted and normalized curvelet energy.
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Figure 3. Region of interest and extracted ROI for File No. 102.

Figure 4. Region of interest and extracted ROI for File No. 200.

Figure 5. R-peak detection of File No. 200.
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sample values representing the location of maxima and

minima are saved.

2. For deciding the inverted R-peak, the amplitudes of large

index location of every extracted R-peak region are

compared to the amplitude of the end index location of

the corresponding R-peak region.

Let the ROI signal (p) multiplied by input ECG signal

(ecg) be represented as extracted R-peak region signal (im),

given by Eq. (9):

im Nð Þ ¼ p Nð Þ � ecg Nð Þ ð9Þ

where N is the number of samples of input ECG segment.

Obtaining R-peak amplitude locations:

maxloc;maxval½ � of segment ¼ max im ið Þ to im iþ 69ð Þ½ �
minloc;minval½ � of segment ¼ min im ið Þ to im iþ 69ð Þ½ �

where i is a starting point of every ROI segment of signal

im.

Now if ecg maxvalð Þ � ecg iþ 69ð Þ[ 30ð Þ thenR �
peak location ismaxloc of segment

else R� peak location isminloc of segment:

Figure 5 shows the R-peak detection of record no.

200 where ‘o’ represents the location of detected

R-peak.

2.3d Removal of false R-peak detection: In some cases, P

and T peaks get enhanced as compared with the normal

ECG signal. Hence, energies corresponding to those peaks

are also enhanced and it may trigger false detection of

R-peak.

The two parameters used to avoid the false R-peak

detection are (i) time duration between R–R-peak and (ii)

amplitudes of the R–R-peaks.

If two consecutive R-peaks get detected within 0.3 s of

time duration, that is, if the difference between two con-

secutive R-peak locations is less than 110 samples, then the

corresponding R-peak amplitudes are checked. The R-peak

Figure 6. R-peak before and after false R-peak detection.
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corresponding to higher amplitude is the true R-peak, and

another one is discarded. This procedure continues for all

detected beats.

for i ¼ 1 to N � 1

ifðrpind ið Þ � rpind iþ 1ð Þ\110Þ
then check for amplitudes corresponding to

two index values as

if abs ecg rpind ið Þð Þð Þ[ abs ecg rpind iþ 1ð Þð Þð Þð Þ
then shift all the R� peaks to the left by one position

from iþ 2 toN

else shift all the R� peaks to the left by one position

from iþ 1 to N

and reduceN toN � 1for every satisfied condition

The record in figure 6 has higher R-peaks amplitude

and inverted R-peaks. The star points in figure 6 show

the R-peak locations detected before removal of false

R-peak and the second figure shows the true R-peaks

detections after removal of the false R-peak algorithm.

3. Results and analysis

Evaluation and validation of the proposed algorithm are

performed using the MIT-BIH Arrhythmia database. It

consists of 48 recordings with duration of 30 min each. The

sampling frequency of these recordings is 360 Hz with 11

bits over 10 mV range. Two cardiologists annotate all

records. The algorithm is implemented on a 2.4-GHz Intel

core i3.3110M processor using MATLAB version 14.

Detected R-peaks are compared to the annotations of R

points from the MIT-BIH database.

Figure 7 shows the output of R-peak detection for dif-

ferent morphologies of QRS complexes.

Table 1 summarizes the result of R-peak detection.

The evaluation of the proposed algorithm is performed

based on the following three performance parameters:

sensitivity, positive predictivity and detection error rate.

After evaluating the proposed algorithm on the above

metrics the results obtained are average sensitivity of

99.64%, average positive predictivity of 99.74 and the

average detection error rate is 0.6%. Table 2 compares the

results obtained using the proposed method with the

Figure 7. R-peak detection for different records.
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algorithms implemented by authors in previous papers

[23, 24] and a few existing algorithms.

Table 2 clearly shows the achievable improvement in

sensitivity and positive predictivity as compared with our

previously proposed methods. Secondly, compared with

state-of-the-art results the detection accuracy obtained

using the proposed algorithm is good.

The average time required for processing a 30-min

record is less than 8 min; that is, the average time required

for a single-beat detection is 210 ms. Table 3 shows the

time of occurrence required for the next heartbeat for three

different types of arrhythmias broadly classified according

to their variation in the heartbeat as normal sinus rhythm,

Table 1. The result of R-peak detection on MIT-BIH database.

Record

no.

Total

no. of

beats FP FN

Positive

predictivity Sensitivity DER

100 2273 0 0 1.0000 1.0000 0.0000

101 1865 1 0 0.9995 1.0000 0.0005

102 2187 41 41 0.9813 0.9813 0.0375

103 2084 0 2 0.0000 0.9990 0.0010

104 2229 31 5 0.9862 0.9978 0.0162

105 2572 33 12 0.9873 0.9953 0.0175

106 2027 2 7 0.9990 0.9965 0.0044

107 2137 8 0 0.9963 1.0000 0.0037

108 1763 73 63 0.9588 0.9643 0.0771

109 2532 0 1 1.0000 0.9996 0.0004

111 2124 0 4 1.0000 0.9981 0.0019

112 2539 0 0 1.0000 1.0000 0.0000

113 1795 0 0 1.0000 1.0000 0.0000

114 1879 0 1 1.0000 0.9995 0.0005

115 1953 0 1 1.0000 0.9995 0.0005

116 2412 0 24 1.0000 0.9900 0.0100

117 1535 0 0 1.0000 1.0000 0.0000

118 2278 0 0 1.0000 1.0000 0.0000

119 1987 6 0 0.9970 1.0000 0.0030

121 1863 2 0 0.9989 1.0000 0.0011

122 2476 0 0 1.0000 1.0000 0.0000

123 1518 0 3 1.0000 0.9980 0.0020

124 1619 0 0 1.0000 1.0000 0.0000

200 2601 0 2 1.0000 0.9992 0.0008

201 1963 0 5 1.0000 0.9975 0.0025

202 2136 0 5 1.0000 0.9977 0.0023

203 2980 27 80 0.9908 0.9732 0.0359

205 2656 0 13 1.0000 0.9951 0.0049

207 1860 22 19 0.9882 0.9898 0.0220

208 2955 2 20 0.9993 0.9932 0.0074

209 3005 1 0 0.9997 1.0000 0.0003

210 2650 14 6 0.9947 0.9977 0.0075

212 2748 0 0 1.0000 1.0000 0.0000

213 3251 0 0 1.0000 1.0000 0.0000

214 2262 2 7 0.9991 0.9969 0.0040

215 3363 0 7 1.0000 0.9979 0.0021

217 2208 0 7 1.0000 0.9968 0.0032

219 2154 0 3 1.0000 0.9986 0.0014

220 2048 0 0 1.0000 1.0000 0.0000

221 2427 0 2 1.0000 0.9992 0.0008

222 2483 0 0 1.0000 1.0000 0.0000

223 2605 0 4 1.0000 0.9985 0.0015

228 2053 16 24 0.9922 0.9883 0.0195

230 2256 0 0 1.0000 1.0000 0.0000

231 1571 2 0 0.9987 1.0000 0.0013

232 1780 0 1 1.0000 0.9994 0.0006

233 3079 0 24 1.0000 0.9922 0.0078

234 2753 0 2 1.0000 0.9993 0.0007

Total 109494 283 395 0.9974 .9964 0.0063

Table 2. Comparison of various methods with the proposed

method.

References Method

SE

(%)

PP

(%)

DER

(%)

Proposed

method

Curvelet energy ?

adaptive threshold

99.64 99.74 0.63

Ghongade

and Ghatol

[23]

Wavelet energy with a

fixed threshold

98.94 98.79 2.26

Barhatte and

Ghongade

[24]

Wavelet energy ? Hilbert

transform ? adaptive

thresholds

97.45 97.40 5.17

Sharma and

Sharma

[15]

Weighted total variation

denoising

99.90 99.88 0.22

Park et al

[11]

Wavelet transform and

modified Shannon

energy envelope

99.93 99.91 0.16

Castels-

Rufas and

Carrabina

[10]

MaMeMi filter 99.43 99.67 0.79

Leong et al

[30]

Quadratic spline wavelet

transform

99.30 99.70 –

Martinez

et al [12]

A wavelet-based ECG

delineator

99.66 99.56 0.78

Tompkins

[16]

First derivative followed

by squaring, windowing

and threshold

99.54 99.75 0.71

Table 3. Buffer length calculations for different heart rates.

Arrhythmias

Heart rate (beats/

min)

Time required for

the occurrence of

the next heartbeat

(ms)

Buffer

length

(ms)

Normal

sinus

rhythm

60–100 (assuming

100)

600 390

Tachycardia [ 100 (assuming

180)

330 120

Bradycardia \ 60 (assuming

40)

150 129

Average of

three

cases

(100 ? 180 ? 40)/

3 = 107

560 350
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tachycardia and bradycardia. Then the buffer length is

calculated assuming the worst case heart rate of each type.

It shows that the minimum overlapping window/buffer

length obtained is 120 ms whereas the average overlapping

window/buffer length is 350 ms. It is clear that 210 ms is

sufficient to process the next beat without loss of any

information.

4. Discussion

The following points contribute to the increase in accuracy

of the R-peak-

1. As QRS complexes are usually 0.06–0.12 s wide (21–44

samples) [10], the width of ROI is considered as 70

samples. The ROI consisting of ON pulse of 70 samples

gives the probable locations of R-peak.

2. The positive R-peak can be clearly differentiated from

inverted R-peak simply by comparing the amplitudes as

explained in section 2.3.2. From figures 6 and 7, it is

obvious that if the R-peaks are inverted the higher

amplitude is very close to the end of the pulse. Thus,

giving the difference of amplitudes of large index and

end index locations as almost zero for the safer side, it is

chosen as 30

3. Lastly, considering that the maximum heart rate possible

is around 180 beats/min, there should not lay two

R-peaks within a range of 0.3 s. Hence the 0.3-s time

duration is used to remove the false R-peaks occurring

before 0.3 s. Here again, the amplitudes of two R-peaks

detected within the 0.3 s are used to decide the true

R-peak. R-peak with higher amplitude is considered as

the true R-peak whereas amplitude with smaller R-peak

is considered as noise.

Finally, we would like to mention that the CT and cur-

velet energy proposed for R-peak detection are the two

contributing points in this paper apart from the three points

discussed earlier. As we have not used any addition clas-

sical filters for pre-processing of ECG signal, the results

obtained are comparable to those from other methods.

Hence, we can say that CT can be used for denoising of a

signal by enhancing the energies of the QRS complex by

reducing the effect of noise in the signal.

5. Conclusion

In this paper, the authors presented and validated R-peak

detection using CT and the adaptive threshold. The exper-

imental analysis gives an average sensitivity of 99.64% and

average positive predictivity of 99.74% with a detection

rate of 0.6%. The results are compared to the results pub-

lished in the literature and have shown a reliable, robust and

accurate method for R-peak detection. As the average time

required for a single-beat detection is 210 ms, which results

in the minimum buffer length of 120 ms, the proposed

algorithm can be used for online as well as offline R-peak

detection.
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