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Abstract: In multiple-input multiple-output orthogonal frequency-division multiplexing
(MIMO-OFDM) systems, multi-user detection (MUD) algorithms play an important role in reducing
the effect of multi-access interference (MAI). A combination of the estimation of channel and
multi-user detection is proposed for eliminating various interferences and reduce the bit error rate
(BER). First, a novel sparse based k-nearest neighbor classifier is proposed to estimate the unknown
activity factor at a high data rate. The active users are continuously detected and their data are
decoded at the base station (BS) receiver. The activity detection considers both the pilot and data
symbols. Second, an optimal pilot allocation method is suggested to select the minimum mutual
coherence in the measurement matrix for optimal pilot placement. The suggested algorithm for
designing pilot patterns significantly improves the results in terms of mean square error (MSE),
symbol error rate (SER) and bit error rate for channel detection. An optimal pilot placement reduces
the computational complexity and maximizes the accuracy of the system. The performance of the
channel estimation (CE) and MUD for the proposed scheme was good as it provided significant
results, which were validated through simulations.

Keywords: channel estimation; evolutionary algorithm; machine learning; multiuser detection

1. Introduction

In the past two decades, the use of wireless communication has exceeded the use of personal
communication or human-to-human (H2H) communication. Thus, we need to achieve high spectral
efficiency, update user experience and reduce latency in this widely-used wireless communication.
Nowadays, the information connectivity for the machine-to-machine (M2M) devices is placed under
high demand, which plays a major factor in the next generation [1]. A new type of traffic that has
arrived in the cellular communication system by interconnecting the large devices is known as the
Internet-of-Things (IoT) [2].

The implementation of gigabit ethernet (GigE), Internet of Things (IoT), vision internet
and heterogeneous networks (Hetnets) has been aided by the 5th generation (5G) networks [3].
Of these, the IoT technology supported by M2M has modernized applications, including agriculture,
transportation, tracking, metering, e-health and so on. Some of the design aspects related to massive
M2M infrastructures include the multiple access system [4], sharing of the resources and the different
parts of networking [5].

Multi-user detection (MUD) is a receiver technology dedicated to the detection of all the interfering
signals via compressive sensing (CS) [6]. If more devices are not in an active state (user activity is
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low), the transmitting signal vector has a sparse property due to a large number of non-zero elements.
Therefore, the decoding of the transmitted signal becomes a CS problem [7]. The long-term evolution is
appropriate for a system that provides a small number of high activity of users. However, this shifts for
machine-type communication (MTC) where a higher number of users with fewer activity sporadically
sends a small number of packets [8].

Recently, researchers have focused more on OFDM systems compared to the existing air-interface
techniques due to its low complexity. In OFDM systems, the subcarriers are sent through multiple
channels, which permits ease of equalization in the case of low complexity during the implementation.

Spyridon et al. [9] considered various types of noises, such as Additive white Gaussian noise
(AWGN), phase noise (PN), Rayleigh fading, Rician fading and Doppler shift with the turbo coding
technique. The simulation platform consisted of three modules (transmitter, channel and receiver).
In the transmitter module, turbo coding is performed, which makes the system more immune to the
effects of noise with excellent BER results. The channel model is constituted by multipath fading,
Doppler shift, AWGN and PN.

In reference [10] the simulation is carried under various noise types, such as complex Rayleigh
fading, complex Rician noise, AWGN and phase noise.

Spyridon et al. [11] split an information stream into multiple frequency carriers, which joins OFDM
in the simulation platform with turbo codes to find a better turbo scheme compared to a typical parallel
concatenated convolutional codes and serial concatenated convolutional codes (PCCCs and SCCCs)
are a class of Forward error correction codes suitable for turbo decoding and a convolutional encoder.

Some of the evolutionary algorithms (EAs) that have been useful for both CE and MUD
investigation includes repeated weighted boosting search (RWBS), differential evolution algorithms
(DEAs) and fuzzy adaptive differential evolution (FADE) algorithm [9,10]. Normally, the continuous
search space is considered for the CE problem and a discrete search space for the MUD
optimization problem.

Multiuser-MIMO (MU-MIMO) broadcast approaches are frequently used to improve the spectral
efficiency. The quality of transmitting pre-coding to dominate the multiuser interference becomes
degraded because of the coarse knowledge of channel state information (CSI) at the transmitter.
Therefore, the interference from co-scheduled user equipment can affect the system throughput.

Park et al. [12] proposed that the channel estimation can be used to subsequently discover the
quality of MU-MIMO systems as a refreshing channel assessment approach which employs reliable
soft symbols. They collect reliable data tones from both desired and interfering users related to the
conclusion and apply them as pilots for re-evaluation of the channel. The channel assessment and
data decoding are obtained iteratively when the channel and data symbols become joined. These two
processes utilize the familiar expectation maximization algorithm.

Zhou et al. [13] considered the problem of CE for a mm-wave system with one RF chain used at
the BS and mobile station (MS). Being different from most existing studies that examined narrowband
channels, they considered the estimation of wideband mm-wave channels with frequency selectivity,
including the angles of arrival/departure, time delays and fading coefficients. In their proposed
method, the two stages compressed the sensing algorithm with the low-rank matrix, which allows
the sampling process to be performed. After this, the sparse recovering stage occurs, which allows us
to estimate the mm-wave channel. Hence, their proposed method has the potential to achieve lower
sample complexity and overhead reduction.

Bao et al. [14] considered multiple access and broadcast channels to examine the error performance
of multidimensional constellations. Specifically, the closed-form expression for the pairwise error
probability (PEP) in the joint maximum likelihood detection was provided for multiuser signaling.
The arbitrary numbers of users and multidimensional signal sets were assumed, while the simulation
results show the importance of the multidimensional constellation. Furthermore, a useful average
symbol error probability was also obtained through the upper bound with the results from the analysis
being more accurate.
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Olfat and Bengtsson [15] considered IoT-based on 5G or machine type communication (MTC),
in which the low-power transmitter communicates with the high-quality receiver. However,
they combine the joint maximum-likelihood estimation of the channel and the multi-path fading
OFDM systems to investigate the probability of the receiver-side compensating for the transmitter
RF impairments. In particular, they proposed an alternative optimization algorithm, which uses
frequency-domain block-type training symbols to prove that their algorithm is able to solve the two
alternate algorithms. After this, they calculated the Cramer-Rao lower boundary, which showed that
the proposed estimator provides a high signal-to-noise ratio.

Fixing the packet collision impairment in both the Advocates of Linux Open-source Hawaii
Association (ALOHA)-based networks and the random access networks is the main aim for reducing
performance degradation. Bartoli et al. [16] proposed a novel MUD scheme, which is used to
separate the collided signals to enable multiple packet reception capabilities in random access schemes.
The performance of Markov chain approach is analytically derived and optimized in terms of network
throughput, before being compared with that of different alternatives.

At BS, each user’s uplink pilots are also transmitted due to the absence of CSI during the estimation
of the channel [17–19]. One of the optimal detectors in the MUD is the maximum likelihood (ML)
method, although it is difficult to use this to achieve the exponential complexity. The zero-forcing or
null steering detector [20], the minimum mean square error (MMSE) detector in M2M [21] and the
maximum a posteriori (MAP) or marginal likelihood detector [22] are some of the sub-optimal MUD
detectors that can be used for situations with less complexity. The main objective of the multiuser
detection involves the study of strategies to demodulate the digital information sent simultaneously by
several transmitters, which share a multiple-access channel. Common channels that are encompassed
by this general model include up-link satellite channels, local area networks and radio networks.
The well-appreciated MUD algorithms simultaneously detect the transmitted symbols of all active
user terminals. However, they know which terminals are active and which user must be inactive.
The existing algorithms only detect the active users in MIMO-OFDM when the user activity factor is
known and small. However, this user activity factor is usually unknown and could be large in practice,
which makes it difficult to employ the multiuser detection (MUD). In the frequency-selective channel,
the resource splitting between pilot and data symbols within the channel’s coherence bandwidth causes
a trade-off between the channel estimation quality and bandwidth available for data transmission.
Sparsity has been used for estimating the parameters of communication systems. Basically, noise and
interference are the major issues in the MIMO OFDM systems. To overcome these issues, the multiuser
detection method along with channel estimation is used in MIMO-OFDM.

The main aim of the paper is to develop the fast MUD and CE algorithm in MIMO-OFDM
for high-speed connectivity and interference cancellation. The proposed method aims to provide
high reliability with a focus on high-speed connectivity fora small number of user equipment
per BS. The analysis for the multipath Rayleigh fading channel in the multi-input multi-output
orthogonal frequency-division multiplexing (MIMO-OFDM) systems has an issue of frequency
selective channel estimation. MIMO-OFDM is the dominant air interface for 4G and 5G broadband
wireless communications. In order to avoid interference and concentrate on the active users of the
network, MIMO-OFDM has more advantages in multiuser detection. The detection of the active users
in the multi-access system is performed by the machine learning approach when the activity factor
is unknown. To evaluate the unknown activity factor at a high data rate, the sparse based k-nearest
neighbor (SKNN) classifier is used. The BS receiver explores the active users and decodes their data.
In activity detection, both pilot and data symbols are applied. For optimal pilot placement, a novel
pilot allocation method is projected, which decreases the common relation of the measurement matrix.
The optimal selection of pilot patterns with the help of cat swarm optimization are used to ultimately
verify the sparse channel evaluation and to reduce the computational complexity. The effect of both
noises and MAI is controlled by both the CE and turbo/decoder technique. It decodes the received
signal properly without any errors from the channel. The reduced BER and SER are calculated to
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compare the performance in the proposed framework. The description of the nomenclature for the
entire paper is described in Table 1.

Table 1. Nomenclature of the system architecture of the entire paper.

Notation Description

NR Number of receiver antennae

LA Number of antennae

Bqx Input data stream

qx Transmitting antenna

BT
qx

a The bit stream after the forward error correction encoder

BI
qx Output bit stream from the interleaver I

X̃qx Modulated data

Xqx [n, k] Time domain (TD)-modulated signal

n Orthogonal frequency-division multiplexing (OFDM) symbol index

K Number of subcarriers

Bqx (n) Transmitted user data

Kcp Cyclic prefix (CP) samples

LCIR Length of the channel impulse responses

Y j[n, k]
Received signal for k-th subcarrier of the n-th orthogonal frequency-division multiplexing
(OFDM) symbol

yqr Received signals

Γ̃qx Received pilot subcarriers

Hqx Frequency-Domain Channel Transfer Functions

Xqx [n, k]
Frequency-domain channel transfer function (FD-CHTF) coefficient of the link between the
x-th user and the q-th receiver antenna in the k-th subcarrier of the n-th orthogonal
frequency-division multiplexing symbol

Wq[n, k] Frequency-domain additive white Gaussian noise (AWGN)

Hi
q[n, k] K-sparse channel impulse vector

Yq[n, k] q-th receiver antenna element in the k-th subcarrier of the n-th orthogonal frequency-division
multiplexing symbol

µ
{

ĥqx

}
Mutual Coherence

ĥqx Overall system’s Channel Impulse Response vector

Hi
qr
[n] Impulse vector for the K-sparse channel

Yqr
[n] Subcarrier-related signals

Xqx
[n] Diagonal elements

Fqx Partial FFT matrix

Iqx , qr Impulse vector of K-sparse channel

Kqx Subcarriers position

2. Materials and Methods

2.1. Multiuser MIMO-OFDM System

MIMO-OFDM system contains T number of antennae having subcarrier frequencies in the BS
of the transmitter side. The system considers I number of MSs and all users simultaneously transmit
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their data streams to the BS, which can be denoted as Bi ∀ 1 ≤ i ≤ I. Furthermore, every user sends a
unique ID along with the signal. Therefore, the user sends the data and pilot sequence as the inputs to
the MIMO-OFDM system.

The MUD and CE process is carried out on the receiver side for interference cancellation and
noise reduction. An important aim of the suggested approach is to find the error bits among the
received signals and correct them. The BER of the overall system is reduced in the joint MUD and CE.
The received symbols and pilot over all subcarriers are collected at the receiver end for interference
cancellation and noise reduction. The transmitted symbols are simultaneously received by the BS
antenna. The MUD methods are used to separate the signals of various MSs depending on their unique
user-specific channel impulse responses at BS. The frequency separation is measured in terms of the
coherence bandwidth. The non-line-of-sight (NLOS) error is the major issue during transmissions that
interferes with a path that is partially obstructed. The NLOS error exists if there is no visual line of
sight (LOS) between the transmitting and receiving antennae. In the NLOS propagation case, it has a
Rayleigh distribution. The uncorrelated fading experienced between the signal and the gain may be
following a Rayleigh distribution.

2.1.1. System Model

We assumed a frequency-selective Rayleigh fading multipath channel between the iTR
th sender

side and iRE
th receiver side. The BS has NR receiver antennae with NI users. Every antenna has a

single omni-directional antenna. The number of antennae LA used is greater than the number of
users I. The signal along with the additive white Gaussian noise (AWGN) and MAI are considered as
the inputs.

Let us consider the stream of bits Bi ∀ 1 ≤ i ≤ I for I users. The number of transmitting antennae
for I users is denoted as Qx, where 1 ≤ qx ≤ Qx. Therefore, the input stream can be represented as
Bqx , where qx is the transmitting antenna. First, the stream of bits can be encoded using the turbo
encoder T. After encoding, the bitstream can be represented by BT

qx , which can be passed through
a pseudo-random interleaver. This interleaver is usually based on the block interleaving scheme,
which is used with turbo codes to scramble the input sequence. The output of the interleaver I can
be represented as BI

qx . The output stream from the interleaver is collected as blocks of log2M bits.
After this, the blocks are modulated as M-ary quadrature amplitude modulation (M-QAM) symbols.

The modulated output can be denoted as X̃qx . That signal can be converted into parallel bits
using the serial-parallel (S/P) converter. We assumed that the OFDM system has N subcarriers. After
this, the OFDM symbols Xqx [n, k] are obtained after embedding the pilot symbols. The transmitted
bit stream of data is comprised of user information and pilot symbols. The transmitted user data is
represented as Bqx (n), n ∈ Ω, Ω = 1, 2, · · ·N and the pilot symbols are denoted as, Bqx (n), where
n ∈ Ψx and Ψx = kx,1, kx,2, · · · kx,p. In this case, the subcarrier K will be in the range 1 ≤ k ≤ K, P
subcarriers are assigned for pilot symbols and n represents the OFDM symbol index. The receiver
knows about the pilot symbols of the frequency domain (FD) and its channel allocation for the initial
CE. After this, the FD modulated signal can be converted into the time domain (TD) modulated signal
xqx [n, k] in the K-point IFFT. The resultant sequence of bits is transmitted to the receiver side through
the MIMO channel after inserting the cyclic prefix (CP) of Kcp samples. The length of CP must be
chosen as Kcp ≥ LCIR, where LCIR represents the length of CIR. When transmitting the signal through
the channel, the signal is contaminated with the AWGN and interference channel.

The received signal can be represented as yqr . The number of receiving antennae for the j-th
output is represented as QR, where 1 ≤ qr ≤ QR. The signal is received in serial form and the CPs are
discarded from each OFDM symbol. Following this, it is fed into the K-point FFT for FD representation
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at the receiver side. Y j[n, k] is the received signal for the k-th subcarrier in the qth
r receiver. The antenna

element of n-th OFDM symbol is given by:

Yqr [n, k] =
I

∑
i=1

Xqx [n, k] Hi
qr [n, k] + Wqr [n, k], (1)

where during the s-th OFDM symbol period, wq[n, k] is AWGN, while Hi
q[n, k] represents the

K-sparse channel impulse vector and FD channel transfer function of i-th user and the qth
r receiver

antenna element, which holds the CIR coefficients. The impulse vector for the K-sparse channel is
represented as:

Hi
qr [n] =

[
Hi

qr [n, 1] Hi
qr [n, 2] · · ·Hi

qr [n, K]
]T

. (2)

The received data can be arranged in a column vector for each receiver antenna, which hosts the
subcarrier signals Yqr [n, k]:

Yqr [n] =
[
Yqr [n, 1] Yqr [n, 2] · · ·Yqr [n, K]

]T
, 1 ≤ qr ≤ QR (3)

The transmitted data of each user in a diagonal matrix Xqx [n] are represented as:

Xqx [n] = diag
{

Xqx [n, 1] Xqx [n, 2] · · ·Xqx [n, K]
}

, (4)

where Xqx [n, K] represents the diagonal elements for I users. The next section deals with the optimally
designed pilots to ensure that all the correlation matrices are diagonal.

2.1.2. Model for the Optimization Problem

The pilot symbols of the i-th transmitter are:

Γ̃qx = X̃qx hqx + W̃qx , (5)

hqx = Fqx Iqx , qr , (6)

where Fqx is the partial FFT matrix and Iqx , qr is an impulse vector of the K-sparse channel.
The partial FFT matrix can be represented as:

[
Fqx

]
a, b =

(
1√
N

)
e−2πkqx,a

b
N , (7)

where a = 1, 2, . . . P; b = 1, 2, . . . L; and kqx,a ∈ Ψqx .
The mutual coherence for the sparse signal of the measurement matrix hqx is as follows:

µ
{

ĥqx

}
= argmin

hqx
‖hqx‖. (8)

The optimization problem can be defined for CE by minimizing the mutual coherence.

2.2. Proposed Joint CE and Turbo MUD

The signals are transmitted into blocks and it is transmitted using the NT transmitter antenna.
The signal is converted into blocks before transmitting the data, which are transmitted along with
the CP. At the transmitter and receiver sides, the inverse FFT and FFT are used for data transmission.
First, the input data streams are transmitted to the turbo encoder at the transmitter side to obtain the
encoded signal and this encoded signal is conveyed in blocks. After this, the encoded signal is fed to
the interleaver. Following this, the output from the interleaver is given to the 16-QAM modulator block
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to produce symbol blocks. We obtain the frequency domain symbol vector after N-point DFT operation.
Furthermore, the subcarrier mapping, IFFT and cyclic prefix (CP) operations are conducted for the
data symbol vector for all subcarriers. The same process is repeated at the recipient side. MAI can
reduce the performance of MIMO-OFDM systems. The detailed architecture is illustrated in Figure 1.
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2.2.1. Sparse Based k-NN for Active User Detection

During the uplink transmission, users transmit the information to the central BS. Basically, all users
are not dynamic during a given time interval so communication may be sporadic in nature. If we
only predict the active users for transmission, the user can achieve high-speed internet connectivity.
The transmitted signal vector is sparse and thus, the reconstruction of this transmitted sparse signal
becomes a CS problem. In order to be suitable for a dimensional feature space, we constructed a bit
mapping for the candidate bits. After mapping the received bits into a feature space, we distinguished
the error bits and the right ones based on some properties. At the BS, the candidate bits are used in the
training database. There is a large number of unknown bits that arrive at the same time. Therefore,
the sparse based k-nearest neighbor (SKNN) algorithm is used to predict both the right and wrong
bits. The prediction scheme is introduced for the detection of uplink data reception. The rights bits
are taken as the active users from the BS, which is given to the receiver antennae. The prediction is
conducted using the k-NN machine learning algorithm. The important aim of this paper is to detect
the received signal from the channel matrix H.

Y = Hb + w (9)

H ∈ CN×K specifies the complex channel matrix between the central BS and K devices. We can
determine the active users for the i-th symbol in b according to:

bi = 0 if inactive
bi ∈ M Otherwise

(10)
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where M is the QAM modulation alphabet.
We considered the received signal bits at the BS as I = (I1, I2, I3, . . . , Ip) where p is the

user dimensionality of the input space. Each input variable can be considered as a dimension
of a p-dimensional input space. The complete set of received signal bits is simply stored in the
“training phase”.

First of all, we must determine the parameter l, where 0 ≤ l ≤ 1. The parameter l determines
the number of nearest neighbors to determine the count of active users at a given time. After this,
we computed the distance between the query instance and all the training samples. The BER and
channel capacity is used as the query instance (QR) to predict the right and wrong bits for every user I
within the limit of l < 0.5.

The amount of error bits in the information stream per unit time is defined as the BER over the
communication channel. BER is given as:

BER =
Ne

Nb
, (11)

where Ne is the total number of error bits and Nb is the total number of bits sent.
A non-linear function, which is called the ergodic capacity, is used for maximizing the capacity

under fixed subcarrier rate. It can be defined as:

C =
1
N

N

∑
k=1

B log2(1 + ηn[k]), (12)

where ηn[k] represents the signal-to-noise ratio (SNR), N is the total number of bits sent and B is the
bandwidth of the received signal. This is the average instantaneous capacity for an AWGN channel
with SNR.

The distance D (I, QR) between the two vectors I and QR is defined as their usual vector distance
in Euclidean units:

D(I, QR) =

√√√√ k

∑
i=1

(Ik −QR)
2. (13)

Finally, based on the kth minimum distance, the nearest neighbors are determined in order to
sort the distance. A neighbor has the minimum distance, which can be used to predict the active
users. Hence, we collected the number of nearest neighbors as the active users. The predicted users
(a right bit belongs to a specific user) are finally taken as the active users and the receiver antennae
receive the k number of active users. After this, the received bits are given to the Turbo MUD/decoder,
which mitigates the effect of both noise and MAI.

2.2.2. Cat Swarm Optimization (CSO) Based Channel Estimation (CE)

In MIMO-OFDM system, the pilot pattern can be optimized by minimizing µ
{

hqx

}
to enhance the

execution of the system. Due to the existence of strong interference, conventional methods (minimum
mean-square error (MMSE) and least-square (LS)) has poor system performance. The pilot sequence
becomes contaminated because of MAI. The performance of the channel is also generally limited
due to pilot tone selection. To improve the performance, an optimal pilot pattern selection using the
cat swarm optimization (CSO) algorithm is applied and thus, it improves the accuracy of sparse CE.
During CE, the pilots are optimally selected using the CSO algorithm with the fitness of delay and
phase, which reduces the mutual coherence. The two modes collected in it are the tracking and seeking
modes. This algorithm identifies the global solutions compared to another existing optimization
algorithm. We assumed that all the model parameters of the channel are associated with both the
transmitter and receiver. Therefore, no feedback channel is necessary to define its error variance and
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no feedback is required for the encoder. Algorithm 1 describes the CSO based optimal pilot pattern for
reducing the largest element in mutual coherence.

The basic idea behind the search algorithm is to select the suboptimal pilot pattern of minimum
mutual coherence from the set of pilot indices Ω = {1, 2, . . . , N}. To reduce the effect of multi-access
interference (MAI), the active users should be continuously detected. For this activity detection,
the pilot and data symbols are considered. In the measurement matrix calculation of optimal pilot
placement, the optimal pilot allocation method is suggested to select the minimum mutual coherence.
Therefore, for MUD, the mutual coherence should be minimized. The major objective is to minimize
the mutual coherence µ

{
hqx

}
during pilot allocation in MIMO-OFDM systems.

Minimal
Nx

∑
qx=1
‖ĥqx − hqx‖

2
2 (14)

In order to tackle the optimization problem, the CSO optimization algorithm is utilized, which
optimally selects the minimal value and hence, the system attains CE.

We designated the set of pilot locations Ψx = z1, z2, · · · zp and the set of pilot distances as
φ = φ1, φ2, · · · φp−1 with φi = zi+1− zi. The first step produces the pilot patterns Ψx = kx,1, kx,2, · · · kx,p

and the mutual coherence µ1, µ2, · · · , µqx , but all the elements in the µ1, µ2, · · · , µqx cannot achieve
all their minimum levels at the same time. We estimated the fitness value for each N cat and the best
fitness value of cat acts as the global best (gbest).

The fitness for the individual function can be defined as:

f (ϕ) =

{
1

µqr
, if 0.6N ≤ zp

1
1000 , else

(15)

If the condition of zp ≤ 0.6N is satisfied, this points to a higher mutual coherence, while zp

specifies the pilot symbols collected from all subcarriers.

Algorithm 1: Pseudo code for the CSO based optimal pilot pattern for reducing the largest element in
mutual coherence.

Initialization. Let different parameters for the population size be Ps = 100, the length of all the individuals is
Len = P − 1 and the maximum generation is Mg. Create the initial population randomly Φi, where
i = 1, 2, . . . Ps. After this, compute the fitness for the initial population individually.

1: Produce N-cats, which represents pilot symbols.
2: Cats have M-dimensional space and arbitrarily gives a range of values for the maximum velocity of
each cat.
3: By applying the position of cats in the fitness function, evaluate the fitness value for each cat.
It represents the finest position of the cat (xbest) by calculating the mutual coherence of each pilot
sequence.
4: Move the cat according to their modes, apply the process of the seeking mode if the cat is in seeking
mode. Otherwise, use the tracing mode process.
5: Activate the tracing mode process again by selecting the number of cats and according to the MR,
the seeking mode can be applied to other cats.
6: To terminate the program, check if the termination condition is satisfied. Otherwise, repeat step 3 to
step 6.

Output: The optimal pilot pattern Ψ.

3. Results

The performance estimation of the suggested method is in the fading channel. The bandwidth
of the system is 5 MHz with 32, 128 and 512 subcarriers. A MIMO-OFDM with dimensions of 4 × 4
is considered for performance evaluation. The input simulation parameters are given in Table 2.
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The simulation results for the suggested method are demonstrated in terms of the BER, SER and MSE
compared to the signal-to-noise ratio (SNR).

Table 2. Simulation Parameters.

Parameters Values

Users 20, 100, 500
No. of cell 7

No. of users per cell 10
Number of transmitters 4

Total pilots to each transmitter 24
Cell radius 1000 m

Guard interval 1
4

Total receivers 4
Number of Subcarriers N 32, 128, 512

Cyclic prefix 16
Signal Constellation 16 QAM modulation
Path loss exponent 4

Bandwidth 5 MHz
Channel Frequency selective Rayleigh fading
FFT size 2048

When compared to existing algorithms, the loss due to the joint MUD and CE is decreased.
The suggested MIMO-assisted multi-user detection algorithm compromises and attains a greater
throughput than the traditional MMSE scheme. The optimum pilot pattern λiTR, iTR = 1, 2, . . . , NTR
is selected through a mutual coherence of 0.1872.

The performance evaluation of SER can be illustrated in Figures 2 and 3 for 20 users and 100 users.
The comparative analysis of various MUD techniques presented in [23] is compared with the existing
approach. SER is minimized for our proposed approach. The proposed technique is compared with
the existing zero-forcing (ZF) detector, minimum mean square error (MMSE) detector, ridge detector
(RD), lasso detector (LD), sparse Bayesian learning (SBL), block sparse Bayesian learning (BSBL) and
pattern-coupled sparse Bayesian learning (PCSBL). The SER is calculated based on the detected errors.
The low and high users’ activity is detected by finding the error bits. The graph significantly shows
that the proposed method has a minimum SER in terms of the SNR (dB) for 20 and 100 users. The rate
of SER is declined with an increase in SNR. BER can estimate the altered bits transmitted over the
channel. The same problem discussed in [23] for activity detection is used but the performance of the
proposed approach outperforms their methods (SBL, BSBL and PCSBL). Furthermore, it is not well
suited for MAI compared to our proposed methods.

The BER and SNR performance of LS and MMSE in Figure 4 shows the efficiency of CE. The CSO
based optimization for attaining the minimized mutual coherence attains a minimized BER in terms
of SNR compared with LS and MMSE. The existing comparison chart for BER is presented in
reference [13].

The comparative analysis of the proposed work represented in Figures 4–7 and the existing works
are taken from reference [15]. The entire bandwidth of the channel is divided by 128 subcarriers with a
symbol duration of 160 µs in the LS based pilot allocation. To avoid inter-symbol interference, we chose
40 µs for the delay spread in the channel, 40 Hz for the Doppler shift and 100 Hz of the Doppler spread.
The simulations were completed for two dissimilar channels (delay and power profiles). The results
were estimated for 500 OFDM simulated blocks based on each antenna. The average SNR was less than
or equal to 25 dB and the average delay was 260 ns for 10 to 20 iterations. Due to ignored channel taps,
the proposed estimator has a larger MSE than the other estimators for SNR = 25 dB. For SNR = 15 dB,
the smallest MSE was achieved with nine-tap.
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Figure 8 shows the MSE performance evaluation for the proposed system compared with the
Least Square (LS) and MMSE [12]. A total of 32 subcarriers are selected through a normalized delay
spread of 1/16. Sixteen QAM modulations were used with a Doppler frequency of 0.1. With QAM,
the proposed system offers a SNR of above 6 dB compared to the existing LS and MMSE. Due to error
transmission, the SNR goes above 20 dB. In the suggested system, 24 pilots are allocated to every
source through 512 sub-carriers. The length of the CP is 8 and the symbol duration is 1.13 ms with
an information ratio of 4 bits per symbol. The suggested approach was diminished with minimal
computational complexity in terms of BER and MSE because the various pilots connected in our system
is smaller than existing plans.Technologies 2018, 6, x FOR PEER REVIEW  14 of 17 
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Table 3 shows the complexity of the proposed system in terms of several iterations, while Table 4
shows the computational complexity analysis of the various multi-user detection and CE techniques
along with our proposed approach.

Table 3. Complexity analysis of the proposed system.

Operations (Per Iteration) First Stage Second Stage Final Stage

Sparse k-NN algorithm 0 N–Np N–Np
CSO optimization algorithm Np 0 0

Channel estimation 0 0 O(n2)
Total complexity for each stage O(n) O(n) O(n2)

Table 4. Computational complexity analysis.

Methods Complexity Description of Notations

EM O(KL− Np)
K-frequency subcarriers, L-OFDM symbols,
Np-pilot symbols

CP O(MTK) M-RF chain sub frames, T-time frames,
K-subcarriers

JCCAE (Joint Channel and
Clipping Amplitude Estimation) O(N3 + N2 + N2) N-symbols

Four Bayesian inference methods O(NK2) N-received symbols, K-transmitted symbols

Proposed O(n2) n-symbols
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4. Discussion

In reference [12], the computational complexity of the expectation maximization (EM)-based
CE depends on the data tones. The complexity is calculated for interference cancellation, coefficient
calculation and their proposed method. The complexity is higher for their proposed approach due to
the greater number of virtual pilots.

The computational complexity in reference [24] is very low due to the use of tensors for processing
and data representation. Actually, the complexity of the CP decomposition-based method is given
as O(MTKL + MKL2 + L3). The number of paths L is too low so the complexity is modified as
O(MTK). The major computational task involves solving the three least squares problems at each
iteration. The number of flops required to compute factor matrices for several iterations in the order
of O(MTKL + MKL2 + L3). When L is small, the dominant term has a computational complexity of
order O(MTK), which has a linear relationship with the size of the observed tensor Y. If the joint
compressed sensing is applied along with the CP decomposition, the complexity becomes large.

Joint maximum likelihood channel and clipping amplitude estimation in reference [25] explores
the potential of the receiver side compensation of the transmitter. Joint Channel and Clipping
Amplitude Estimation (JCCAE) uses three algorithms for joint CE and Clipping Amplitude (CA)
estimation. Since the three algorithms are iterative algorithms, the repetition of estimating the channel
and CA results in high complexity.

The four Bayesian interference methods [23], such as Sparse Bayesian Learning (SBL), Gaussian
Mixture Model (GMM), Pattern Coupled Spare Bayesian Learning (PCSBL) and Block Spare Bayesian
Learning (BSBL), are used for multi-user detection to control the estimated signals. The calculation of
posterior distribution reduces the computational complexity of the transmitted signals. However, it is
not devoted to developing interference users and the e-algorithms.

The joint multi-user detection and CE methods are used in this paper with low computational
complexity. Actually, many of the devices are in an active state so the user activity is low. Furthermore,
there are a considerable number of zero elements in the transmitted signals due to the sparse property.
This paper proposes a sparse k-NN algorithm to determine the active users and the optimal pilot
patterns are selected for CE, which considers a small activity of users. The machine learning algorithm
reduces the complexity to O(n). The optimal pilot-based CE uses the CSO optimization algorithm with
the smaller computational complexity of O(n). Therefore, the overall system achieves the complexity
of O(n2). The proposed algorithm not only reduces the complexity but also reduces the MAI.

5. Conclusions

This paper proposed a joint CE and MUD scheme to provide reliable and high-speed connectivity
to a small number of user equipment per BS. The sparse based k-nearest neighbor (SKNN) is used to
determine the unknown user activity factor. The optimum selection of pilot patterns with the help of
CSO algorithm is used for the ultimate verification of sparse CE, which leads to less computational
complexity. The proposed algorithm provides better performance in terms of pilot patterns with
respect to BER and MSE. Thus, it avoids the interference and provides lower complexity. A spectral
efficiency of the suggested CSO algorithm for CE is greater compared to the LS and MMSE methods.
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