
Abstract
Congestion deteriorates the network performance. In this paper various congestion control AQM algorithm are analyzed
and surveyed with their shortcomings and their advantages. The main objective of the paper is to study existing AQM
algorithm and develop a new AQM algorithm that gives better result than the existing algorithm. AQM are the router based
mechanism for early detection of congestion in the computer network. The basic idea of AQM is to sense and detect con-
gestion in advance and to inform the sender to reduce its sending rate, thereby reducing the number of packets sent in
the network and control the congestion. There are several AQM algorithms that controls the congestion. In this paper, we
have surveyed, compared and analyzed Random Early Detection (RED), Flow Random Early Detection (FRED), Stabilized
Random Early Detection (SRED), Stochastic Fair Queuing (SFQ), Random Exponential Marking (REM), BLUE, Stochastic
Fair BLUE (SFB) AQM algorithms. Performance parameter are tested and evaluated in NS2 simulator. After analyzing it was
found that RED AQM compared with SFQ and REM achieved best result in terms of delay. SFQ had minimum average ratio
and RED had max loos ratio. REM algorithm showed the best result with respect to throughput loss ratio and link utiliza-
tion. Improvement: After analyzing and comparing several AQM algorithm it was found that no single algorithm can solve
all the problems. Hence a research is needed to develop a new AQM algorithm that has good link utilization, is fair enough,
has less loss ratio, require less space and easy for configuration.

Comparative Analysis and Comparison of Various
AQM Algorithm for High Speed

Uma R. Pujeri1, V. Palaniswamy1, P. Ramanathan2, Ramachandra Pujeri3*

1Anna University, Chennai - 600025, Tamil Nadu, India; umaresearch81@gmail.com, v.palaniswamy81@gmail.com
2Info Instistute of Technology, Coimbatore - 641107, Tamil Nadu, India; pramanathan2509@)gmail.com

3Pune university, Pune – 411007, Maharashtra, India; sriramu.vp@gmail.com

Keywords: BLUE, FRED, QoS, Queue Management, RED, REM, SFB, SFQ, SRED

1.  Introduction
AQM algorithm are congestion control algorithm which
increases throughput, link utilization and decreases the
delay and packet loss. The first AQM algorithm called
RED (Random Early Detection) provides the mechanism
for congestion avoidance. This technique had several
drawback and one among which was inability to deal with
busty traffic. RED algorithm is studied, analyzed by many
researchers and RED has been the basis for the develop-
ment for new AQM algorithm. The major objective of
RED algorithm are:

RED OBJECTIVES
To monitor the queue length•	
High link utilization•	

Early congestion detection •	
Minimize queuing delay•	
Decrease packet loss•	
Achieve fairness•	
Avoid global synchronization•	

RED algorithm monitors the average queue size and
drop the packet based on the statistical probability. Unlike
RED FRED does not make the dropping of packet deci-
sion on queue length but FRED monitors each active
flow within the buffer and usage of bandwidth of each
flow and takes the dropping decision depending on the
usage of bandwidth of active flow. Cost of FRED is inde-
pendent from number of flow but is proportional to the
buffer size. SRED algorithm is stabilized RED algorithm
with additional features added to the RED algorithm.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/81476, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology2 Vol 8 (35) | December 2015 | www.indjst.org

The goal of SRED algorithm is to trace the active flow in
queue that take more bandwidth share and allocate equal
fair share of bandwidth to all the active flow in the queue
was proposed by Jhon Nagle in 1987 which is fair queuing
algorithm. SFQ is called “stochastic” because SFQ algo-
rithm divides the traffic over a number of queues using
hashing and round robin algorithm. REM is an AQM
algorithm which achieves both high utilization and negli-
gible loss and delay in a simple and scalable manner. REM
algorithm has two specific key features and they are:

Match Rate Clear Buffer•	 - Stabilizes the queue around
small target regardless of number of user that is it
matches the user rate with network capacity while
clearing the buffer.
Sum Prices•	 - It is sum of link prices (congestion
measures), summed over all the router in the route of
the packet from source to destination to estimate end-
to-end marking or dropping probability.

In BLUE AQM algorithm the congestion is managed
through packet loss and link utilization history. BLUE
maintains only a single marking probability variable.
When the queue continuously starts to drop the packet
due to congestion or buffer overflow, marking probability
is incremented by 1 else when the queue is empty or idle
this marking probability is decremented. SFB is an AQM
algorithm which identifies and rate limits non responsive
flow using very small amount of state information.

The purpose of this survey is to revisit different AQM
algorithm like RED, SFQ, REM, FRED, SRED, BLUE and
SFB, outline different consideration in their design and
also highlight their disadvantages and limitations which
will help in design of new algorithm that can take maxi-
mum advantages of the existing algorithm and dilute the
limitations.

The paper is organized in following manner Section 2
discusses AQM algorithms in details with step by step algo-
rithm for each AQM algorithm considered in this paper.
Section 3 compares each algorithm with respect to link
utilization, fairness, space requirement, per flow state infor-
mation, advantages and disadvantages. Section 4 discusses
conclusion and future work.

2. AQM Algorithm
AQM algorithm senses the network congestion in advance
and inform the sender to reduce its sending rate thus

minimizing the number packets in the network. There are
several AQM algorithms but in this paper we have con-
sidered following AQM algorithm they are:

RED•	
SFQ•	
REM•	
FRED•	
SRED•	
BLUE•	
SFB•	

2.1  Random Early Detection (RED)
RED is an AQM algorithm which is also known as
Random Early Detection or Random Early Discard or
Random Early Drop that provides mechanism for conges-
tion avoidance. Traditional drop tail algorithm drop the
packets if the buffer is full. Drop tail algorithm does not
fairly distribute the buffer space among the traffic flow.
Drop tail algorithm can also lead to global synchroniza-
tion. This problem is overcome in TCP RED.

TCP RED monitors queue size depending on the queue
RED takes the decision of dropping the packet, that is if
the queue is empty all the packets are accepted, as queue
becomes full the probability of dropping the packet also
increases. When the queue becomes full all the incoming
packets are dropped.

2.1.1  Random Early Detection (RED) Algorithm
Step 1: Calculate the average queue size AvgQueSize
Step 2: �If(AvgQueSize > MaxQueSize)
    drop the packet
Step 3: else if(AvqQueSize ==0)
    queue empty
    accepts all incoming packets
Step 4: else if(AvgQueSize=minqueuethreshold)
    calculate dropping probability pa
    drop the packet with probability pa
Step 5: else forward the packet.

2.2  Stochastic Fair Queuing (SFQ)
SFQ - Stochastic Fairness Queuing (SFQ) is an AQM
algorithm that uses hashing and round robin algorithm.
In SFQ algorithm a traffic flow is identified by four
options they are source address, destination address,
source port and destination port. These parameters are
used by SFQ hashing algorithm to classify the packet into

Uma R. Pujeri, V. Palaniswamy, P. Ramanathan, Ramachandra Pujeri

Indian Journal of Science and Technology 3Vol 8 (35) | December 2015 | www.indjst.org

1024 sub-streams. Bandwidth is distributed equally to
all the sub-stream using round robin algorithm. Round
robin algorithm allocates a SFQ-allot bytes of traffic on
each round thus fairly distributing the available band-
width among all the sub-stream.SFQ queue contains 1024
sub-stream and 128 packets
SFQ algorithm
Parameters
int maxqueue max queue size in packets
int buckets number of queues

Functions

1. Enque the packet enque()
2. Dequeue the packet dequeue()
3. Calculate the hash function hash()
4. Calculate the fair share initsfq()

2.2.1  Steps for Enqueue Function
Step 1: �Initialize variables which, used, left. (which variable

is used to find which queue from 128 queues, used
variable is used to find number of bytes used by
the queue, left variable is used to find left space in
the queue)

		 PacketSFQ ∗q
Step 2: Check if (!bucket)

		 Call function initsfq
		 Which = hash(pkt) % bucket
		 q = &bucket[which]
		 left = maxqueue-occupied

Step 3: �If maxqueue is changed while running left can
become less than 0

		� check if ((used>=(left>>1)) ||
(left<bucket_ && used > fairshare) ||
(left <=0))

		 drop the packet

		 else
		 enqueue the packet.

2.2.2  Steps for Dequeue Function
Step 1: Packet ∗pkt

   check if(!bucket)
   call function initsfq()

Step 2: check(!active)
   return 0
   dequeue the packet

Step 3: check if(active->pkts ==0)
   active=active->idle(active)
   else
   active=active->next
   return the packet

2.2.3  Steps for Hash function
Step 1: int i is pointer to source address of packet

   int j is pointer to destination address of packet.
   int k = i + j

Step 2: Calculate and return k
   (k+(k>>8)+~(k>>4)%((2<<19)–1)

2.2.4 � Steps for Initsfq Function to Calculate Fair
Share

Step 1: active = 0
   occupied = 0
   fairshare = maxqueue_ / buckets

2.3  Random Exponential Marking (REM)
Random Exponential Marking is an active queue
management algorithm which decouples the congestion
measures with performance measure such as delay, Packet
delivery ratio, throughput packet loss etc and stabilizes the
performance measure around the target independently of
the number of users.

REM has two important key features.

Match the rate clear buffer,•	
Sum Prices.•	

Match rate clear buffer: REM algorithm stabilizes the
input rate with the total capacity and the queue length
with small target irrespective of the number of user shar-
ing the link. REM output queue uses a variable called
“price” which is used to estimate marking probability.
The value of price variable is updated periodically or
asynchronously in two cases:Figure 1.  SFQ operation.

Input

Incoming

HASH

ALGORITHM

Logical

FIFO

QUEUE

ROUND
ROBIN

ALGORITHM
OUTPUT

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology4 Vol 8 (35) | December 2015 | www.indjst.org

When there is difference between the input rate and •	
link capacity.
When there is difference between queue length and •	
target.

The weighted sum is positive if the input rate exceeds
the link capacity else the weighted sum is negative. When
the weighted sum of these mismatches (that is difference
between input rate and link capacity and the difference
between queue length and target) is positive the value
of the price variable is incremented else the value of the
price variable is decremented.

Case 1: �When number of users increases the input rates
grows hence weighted sum is positive the price is
incremented and so is the marking probability. In
such case a strong congestion signal is sent to the
sender to reduce their sending rate.

Case 2: �When input rate is too low than the link capacity
the weighted sum will be negative the price and
marking probability is decremented which raises
the source rate until the mismatches are driven to
zero.

Thus REM explicitly control the value of price. Value
of price is updated for queue length l in time period t with
the following formula

	 pl(t+1)= [pl(t) + γ(α1(bl(t)- bl*)+xl(t)-cl(t))]+� (1)

Where
γ> 0
Small constants
α1 > 0
bl(t) is buffer occupancy at queue l in period t.
bl∗(t)>=0 target queue length
xl(t) is input rate
cl(t) is available bandwidth of queue l in period t
xl(t)-cl(t) is rate mismatch
bl(t)-bl* is queue mismatch

α can be set by each queue depending on the band-
width utilization and queuing delay. γ controls the
responsiveness of the REM to control the network con-
dition. When the weighted sum and queue mismatches
are positive which are weighted by α the price value is
increased else the price value is decreased.

Price can be stabilized when weighted sum is zero that
is α1(bl-bl*) + (xl-cl) = 0 this can happen only when input
rate equals the link capacity (xl = cl) and the queue length
equals the target that is (bl = bl*)

When the target queue length b* is non zero the
mismatch rate xl (t)-cl (t) can be bypassed to update the
price xl (t)-cl (t) grows when queue length and buffer is
nonempty. Hence approximate this term by change in
backlog bl (t+1)-bl (t) it becomes:

	 Pl (t+1)=[pl (t)+γ(bl (t+1)-(1-αl)bl (t)-αlb*)]+� (2)

Hence it is observed that REM algorithm the prices
increases while the queue length is stabilized around the
target bl* regardless of the increase in number of users.

Sum Prices: Sum Prices is the sum of all the link prices
along the path from source to destination to estimate
end-to-end marking probability.

Suppose a packet traverse links l = 1,2,3,------l that
have price pl (t) in time period t then the marking prob-
ability ml (t) at queue l in time period t is calculated as:

	 Ml (t) = 1-Φ-pl (t)� (3)

where Φ > 1 is a constant
End-to-end marking probability is calculated as:

	 1- -Σlpl (t)� (4)

End-to-end marking probability is high when conges-
tion in its path is large .When the link marking probability
ml (t) are small hence the link prices pl (t) are small,
the end-to-end marking probability is approximately
proportional to the sum of the link prices in the path:

	 end-to-end marking probability� (5)

REM Algorithm
Parameters
double v_pl 			 link price
double v_prob		 packet marking probability
double v_in			 input rate
double qib			 queue in bytes.
double remp_.p_gama		 value of gamma
double remp_.p_phi		 value of phi	
double remp_.p_pktsize		 mean packet size
double remp_.p_updtime	update time
double remv_.v_prob		 dropping probability
double curq			 current queue size
int pmark			 number of packets
being marked.

Four functions:

reset function.•	
to compute average input rate price and marking prob-•	
ability.

Uma R. Pujeri, V. Palaniswamy, P. Ramanathan, Ramachandra Pujeri

Indian Journal of Science and Technology 5Vol 8 (35) | December 2015 | www.indjst.org

dequeue.•	
enqueue.•	

2.3.1  Function Reset
It computes the “packets time constant” if link bandwidth
is known ptc is the max number of packets per second
which can be placed on link

Steps for Reset Function

Step 1: if(link_)
   calculate packet time constant
  � remp_.p_ptc=link->bandwidth()/(8.0 ∗ remp_.

p+pktsize)
Step 2: initialize variables

   remv_.v_pl=0.0
   remv_.v_prob=0.0
   remv_.v_in=0.0
   remv_.v_count=0.0
   remv.v_pl1=0.0

2.3.2 � Function to Compute Average Input Rate
Price and Marking Probability

This function compute average input rate, price and
marking probability. Link price is computed by following
formula:

	 Pl = remv_.v_pl� (6)

Where remv_.v_pl is a link price stored in variable pl.
Input rate is calculated by the formulas:

	 In = remv_.v_count� (7)

where remv_.v_count contains number of packets arriving
at link stored in a variable in
marking probability is calculated by following formulas.
Calculate maximum number of packets sent during one
update interval	 :

double c = remp_.p_updatetime∗remp_.p_ptc pl =
pl+remp_.p_gamma∗(in_avg+0.1∗nqueued-remp_.p_
bo)-c)

where pl is link price:

if (pl<0.0)
pl = 0.0

Calculate pow 1

pow1 = pow (remp_.p_phi-pl)

	 pr = 1.0-pow1� (8)

where pr is marking probability.

2.3.3 � Steps for Computing Average Input Rate
Price and Marking Probability

Step 1: initialize variables
   double in, in_avg, nqueued, pl, pr.

Step 2: Calculate link price pl
   Pl = remv_.v_pl

Step 3: �Calculate number of bytes or packets arriving at the
link (input rate) during one update time interval

   In = remv_.v_count
Step 4: Calculate average input rate

   in_avg = rem_.v_ave
   in_avg∗ = (1.0-remp_.p_inw)
   check if(qlib)
   calculate in_avg
   in_avg+ = remp_.p_inw∗in/remp_.p_pktsize
   nqueued = bcount/remp_.p_pktsize
   else
   Calculate average input rate with formula
   in_avg+ = remp_.p_inq∗in
   nqueued = q->length()

Step 5: �Calculate maximum number of packets sent
during one update interval

   double c = remp_.p_updatetime∗remp_.p_ptc
  � pl = pl+remp_.p_gamma∗(in_avg+0.1∗nqueued-

remp_.p_bo)-c)

   Step 5.1: check if(pl<0.0)
   Pl = 0.0

   Step 5.2: Calculate pow 1
   pow1=pow(remp_.p_phi-pl)
   pr = 1.0-pow1

   Step 5.3:� Set the value of count, average, input rate
link price and marking probability.

   Pr = 1.0-pow1
   remv_.v_ave = in_avg
   remv_.v_pl = pl
   remv_.v_prob = pr

2.3.4  Steps for Enqueue of Packets
Step 1: intialize variable qlen

  � check number of bytes in queue calculate input
rate if(qib_)

   rem_.v_count+=ch->size()
   else
   ++remv_.v_count

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology6 Vol 8 (35) | December 2015 | www.indjst.org

Step 2: Calculate qlimit and qlength
   check if qlimit is greater than queue length
   if (qlen> = qlim)
   drop packet
   else
   mark the packet for drop probability

2.3.5  Function for Dequeue of Packet

Step 1: Packet *p = q->deque()
   if(p! = 0)
   Calculate the packet size
   bcount_= hdr_cmn::access(p)->size

Step 2: Calculate the marking probability
   If (markpkts_)
   double u = Random::uniform()

   Step 2.1: check if(p! = 0)
   double pro = rem_.v_prob

   Step2.2: if (qib_)
   Calculate size
   calculate dropping probability
   pro = remv_.v_prob∗size/remp_.p_pktsize

   Step 2.3: Check if(u< = pro)
   mark the current packet
   pmark++

Step 3: Calculate queue length
   double qlen = qlib_?bcount_ :q_->length()
   curq_= int qlen.

2.4  Stabilized RED (SRED)
SRED is called as stabilized RED AQM algorithm which
is derived from RED AQM algorithm by adding some
feature to it. The goal of SRED algorithm is to identify
the flow that take more bandwidth and to allocate the fair
share of bandwidth without performing much computa-
tion .To achieve this SRED algorithm uses Zombie list
which is small list of recently seen active flows with addi-
tional information for each flow in the list “count” and
timestamps.

The zombie list initially is empty whenever a new
packet arrives its packet identifier (source address, des-
tination address) is added to the list. Count is set to zero
and time stamp is set to arriving time of packet.

Once the zombie list is full SRED algorithm compare
the arriving packet with the random selected zombie in
the zombie list. After this comparison one out of two
actions can be taken from the following:

Whenever the arriving packet matches with the 1.	
packet in the zombie list it is a hit the variable count is
increased by one and timestamps is set to latest packet
arrival time.
Whenever the new arriving packet do not match with 2.	
random selected packet (zombie) in the zombie list it
is no hit or miss then zombie list is replaced or over
written by the new arriving packet. Count is set to zero
and time stamp is set to the arrival time at the buffer
with probability p.

SRED estimates p (t) for hit frequency of tth packet at
the buffer.

Hit(t) =		 0	 if no hit
		 1	 if hit

	 P (t) = (1-α)p(t-1)+α_hit (t)� (9)

where 0<α<1
SRED estimates p (t)-1 for effective number of active

flow. Suppose there are many flows numbered 1,2,3.....n.
Suppose that every time the packet arrives it belongs to
the same flow flowi with the probability

Therefore every arriving packet the probability that it
cause a hit is:

	 P{Hit (t)=1}=� (10)

To reduce the overhead SRED update p (t):
0<=p(t)<=1/256
SRED calculates drop probability with following

formula.
Let the buffer capacity be B bytes. A function PSRED

(q) is defined as follows:
PSRED (q) = Pmax if 1/3 B <= q <= B
		 1/4 * Pmax if 1/6 B <= q <= 1/3 B
	 0	 if 0 <= q <= 1/6B
Pmax is chosen as 0.15
q is total bytes in buffer
B is capacity of buffer in Bytes
Hence SRED calculates the drop probabilty with fol-

lowing equation for simple RED

	 P (zap) = Psed (q) * min (1, 1/256*P (t)2)� (11)

In full SRED the drop probability is calculated as:

	 P (zap) = PSRED (q) * min(1,1/256*p (t)2) *
(1+(Hit (t)/P (t)))� (12)

Uma R. Pujeri, V. Palaniswamy, P. Ramanathan, Ramachandra Pujeri

Indian Journal of Science and Technology 7Vol 8 (35) | December 2015 | www.indjst.org

2.4.1  Algorithm
Parameters
int M = 1000
double p_t_	 hit frequency
double p_max	 maximum drop frequency
double aipha	 alpha = p/M = p_overwrite/M
int bcount_	 byte count
int qib		 queue measure in bytes.
int count	 count of pkts of flow in zombie
int fid		 flow identifier
qweight = 0.002
thresh = 5
max_thresh = 15
mean_pktsize = 500
int curq_	 current queue size

Step 1: Create a Zombie list check if (list size_ <M)
  � if true add identifier (source address, destination

address) to the zombie list.
   Intially count = 0
  � Zombie list timestamp = arrival time of the

packet.
   increment list size by 1
   ++listsSize

Step 2: Check the curq<qlim_	 (qlim_ is qlimit)
   if true enque the packet
   else drop the packet

Step 3: �Select randomly any packets from zombie list. And
compare it with newly arrived packet

   if the flow id matches then it is hit
   if (Zombie list <-[index].fid = fid)
   hit = 1
   Zombie list [index]. count++
   set the timestamp to latest arrival time of packet
   else
   it is a miss
   hit = 0
  � overwrite the zombie list with newly arrived

packet with random probability.
   Set
   Zombie list [index].fid = fid
  � Zombie list [index]. timestamp = Schedular::insta

nce().clock()
Step 4: Update hit frequency

   p_t = (1- appha_) * p_t_+ alpha_ * hit
   (Note that value of alpha is p_overwrite/M)

Step 5: Intialize len, lim, lim_3,lim_6
   Len = curq*536

   Lim = qlim_*536
   lim_3 = lim/3
   lim_6 = lim/6
   Step 5.1: if ((len > = lim_3) && (len < lim))
   return p_max_;
  � Step 5.2: else if ((len > = lim_6) && (len <

lim_3))
   return (p_max_/4);
   Step 5.3: else if ((len > = 0) && (len < lim_6))
   return 0

Step 6 : Calculate drop probability for simple sred.
   Double factor
   factor = 256 * p_t_
   factor = factor*factor
   factor =1/factor
   if(factor>1)
   factor = 1
   return (prob_sred*factor);

Step 7 : Calculate drop probability for full Sred
   double prob_zap = calc_simple_pzap(prob_sred)
   prob_zap* = (1+hit/p_t_)
   return prob_zap

2.5  Flow RED (FRED)
FRED is Flow based Random Early Detection which
is modified version of RED, which was developed by
lin and Morris which uses per active flow accounting
to make dropping decision for different active flow
accounting to make dropping decision for different
active flow in the queue depending on their bandwidth
usage. FRED keeps a track of each flow and bandwidth
usage of each flow that are inside the queue hence the
cost of FRED is independent from number of flows but
is proportional to the buffer size. FRED was developed
as an alternative to RED algorithm to protect from
number of fragile flow and to maintain high degree of
fairness.

Additional parameters that are included in FRED are:
Min q: Min q represents minimum number of packet

that each flow i is allowed to buffer in the queue.
Max q: Max q represents maximum number of pack-

ets that each flow i is allowed to buffer in the queue.
Avgcq - Is a global variable that estimates the per flow

packets to be buffered in the queue. The flow i have less
packets to be queued in buffer that avgcq is favored than
the flows whose packet count to queued is greater than
avgcq.

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology8 Vol 8 (35) | December 2015 | www.indjst.org

Qlen (i) – This variable maintains the count of buffered
packets for each flow.

Strike (i) - For each flow i strike (i) is a count for
number of times the flow has failed to respond to
congestion notification.

If the strike (i) value for the flow increases FRED
penalizes such flow.

Nactive - FRED estimates active scavenger service
flow number by the variable nactive in FRED.

2.5.1  Algorithm
Constants
Wq = 0.002
Minth = MIN (buffersize/4, RTT)
Maxth = 2*minth
Maxp = 0.02
Minq = 2 for small buffer
4 for large buffer
Global variables
q - current queue size
time – current real time
avq – average queue size
count – number of packets since last drop
avgcq – average per flow queue size
maxq – maximum allowed perflow queue sizePer Flow
variables:
qleni- nu ber of packets buffered
stikei: count of number of times the flow has failed to
respond to congestion notification
Mapping function
Conn (P):- Connection id of packet P.
F (time): linear function of time

Step1: �For each arriving packet P check if flow i = Conn
(P) has no state table then set qleni = 0 and strikei
= 0.

Step2: �Check if queue is empty if true calculate average
queue length avg.

Step 3: set maxq = minth
   if (avg > = maxth)
   set maxq = 2

Step 4: Identify and manage non adaptive flow check.
  � If (qleni> = maxq || (avg > = maxth && qleni >

2*avgcq) || cqleni > = avgcq && strikei >1))
   set strikei = strikei+1
   drop packet p

Step 5: Operate in random drop mode.
   check if (minth< = avg<maxth)

   set coun t= count+1
Step 6: �For only random drop from robust flow do the

following.
   check if (qleni > = MAX (minq, avgcq))
   calculate probability Pa
   pb = maxp (avg-minth)/ (maxth-minth)
   pa = pb/ (1-count*pb)
   with probability pa drop the packet p, set count 0
   else check if (avg<minth)
   no drop mode
   set count = -1
   else
   drop tail mode , set count = 0, drop packet p
   if (qleni = 0)
   set Nactive = Nactive+1
   calculate average queue length, accept the packet p

Step 7: �For each departing packet p Calculate average
queue length.

   If (qleni = 0)
   set Nactive = Nactive+1
   delete the state table for flow i

Step 8: Calculate average queue length
   check if (q || packet departed)
   calculate avg
   avg = (1-wq) * avg + wq * q
   else
   set m = f (time-q_time)
   avg = (1-wq)m*avg
   q_time = time
   check if (Nactive)
   avgcq = avg/Nactive
   else
   avgcq = avg
   acvcq = MAX(avgcq,1)
   if(q = 0 && packetdeparted)
   q_time = time

2.6  BLUE
BLUE is an AQM algorithm in which queue management
is done base on the link utilization and number of packets
dropped. BLUE maintains variable pm to estimate mark-
ing probability for either marking the packet or dropping
the packet. When queue becomes full it starts dropping
the packets. When queue becomes full it starts dropping
the packet and pm is incremented by factor δ1. If the
queue is empty pm is decremented by the factor δ2. The
value of δ1 is set such a way that δ1 > δ2.

Uma R. Pujeri, V. Palaniswamy, P. Ramanathan, Ramachandra Pujeri

Indian Journal of Science and Technology 9Vol 8 (35) | December 2015 | www.indjst.org

BLUE uses one more parameter called freeze time
which determines the time interval between two successive
updates of freeze time.

2.6.1  BLUE Algorithm
Step 1: Upon Packet loss or (Qlen>L) event

   if((now_last_update)>freeze_time)
   pm = pm+δ1
   last_update = now

Step 2: upon link idlee vent
   If (now lastupdate)>freeze_time)
   Pm = pm-δ2
   Last update = now

2.7  Stochastic Fair BLUE (SFB)
SFB is another AQM algorithm which protects the TCP
flows against the non-responsive flow using BLUE AQM
algorithm. SFB algorithm identifies and rate limits the
non-responsive flow and mechanism used to iden-
tify this non-responsive flow is same as the accounting
mechanism used in BLUE algorithm. SFB maintains N*L
accounting bins where L is the number of level and N
is the number of bins in each level. SFB also maintains
L independent hash functions each associated with one
level of accounting bin.

SFB maintains a variable called pm which keep a track
of marking/dropping probability in each bin. When a new
packet arrives it is mapped into one of N bins in each of
the l levels. When the number of packets mapped to a bin
goes above certain threshold value pm is increased. If the
number of packets drops to zero the pm is decreased.

2.7.1  SFB Algorithm
B[l][n]: L*N arrays of bins (L levels, N bins per level)
enqueue()
Calculate hash function values h0,h1
update bin at each level
for I = 0 to L-1
if(B[i][hi]*pm+ = delta
drop packet
else if(B[i][hi]*qlen = 0)
B[i][hi]pm = delta
Pmin = min(B[0][h0].pm.... B[L][hL]*pm)
if(pmin = 1)
rate limit()
else
mark/drop with probability pmin

3.  Comparison

Table 1.  Comparison of AQM Algorithm with respect to link utilization, fairness, space requirement, per flow
state information, complexity, configuration complexity

Sr No Algorithm
Link

Utilization
Fairness

Space
Requirement

Per Flow State
Info Mation

Complexity
Configuration

Complexity

1 RED GOOD UNFAIR LARGE NO HIGH Q Sampling
frequency HARD

2 SFQ GOOD FAIR LARGE NO HIGH Q Sampling
frequency HARD

3 REM GOOD FAIR SMALL NO LOW Queue
Sampling frequency EASY

4 FRED GOOD FAIR SMALL YES HIGH Queue
Sampling frequency EASY(adaptive)

5 SRED GOOD FAIR LARGE NO HIGH Queue
Sampling frequency EASY

6 BLUE GOOD UNFAIR SMALL NO HIGH Queue
Sampling frequency EASY

7 SFB GOOD FAIR LARGE NO HIGH Queue
Sampling frequency HARD

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology10 Vol 8 (35) | December 2015 | www.indjst.org

Table 2.  Comparison of AQM algorithm with respect to advantages and disadvantages

Sr No Algorithm Advantages Disadvantages

1 RED

1. Early congestion detection
2. RED algorithm avoids bias against busty traffic

3. TCP global synchronization that occurs in
drop-tail algorithm is overcome in TCP RED

AQM algorithm

1. Difficulty in parameter setting
2. Insensitive to the busty traffic.

2 SFQ

1. Simple in implementation for fair queue
algorithm family

2. Fair distribution of available bandwidth among
all the sub-stream

3. SFQ algorithm is useful for those network
where utilization of link capacity on different

source is equal.
4. SFQ have low end-to-end delay so these

queue mechanism can be used in delay sensitive
application

1. Loss rate of the packet is high
2. Congestion window fluctuation is more

3 REM
1. Low computational load on the system
2. Achieves both high link utilization and

negligible loss and low delay.

1. Low throughput for web traffic
2. Inconsistency with TCP sender mechanism

works best with ECN.

4 FRED 1. Protects from fragile flow and maintains high
degree of fairness

1. Maintain per flow state
2. RED disadvantages

5 SRED

1.Stabilized queue occupancy
2. Protection from misbehaving flow

3. Detects the flow that take more bandwidth and
a fair share of bandwidth without performing

much computation

1. Maintains additional list called as zombie list
2. RED disadvantages.

6 BLUE 1. HIGH throughput
2. Maintain small queue

1. BLUE algorithm uses link utilization and
packet loss history instead of queue length to

manage congestion
2. Not Scalable

7 SFB

1. Protects TCP flow against non-responsive flow
2. Identifies and rate limits the non-responsive

flow
3. Enforces the fairness among the flow

4. No additional overhead is required in packet
header like SFQ AQM algorithm

1. SFB needs to reconfigured with non-responsive
flow

2. Bandwidth requirement for non-responsive
flow depends on the parameter Box-time

3.Box-time is a static parameter which can
only be set manually and cannot be configured
automatically. The suitable value of Box-time is
one for one case and may be different for other

case. This is a major drawback of SFB.

4.  Conclusion and Future Work
In this paper we have analyzed compared and surveyed
various AQM algorithm like RED, SFQ, REM, FRED,
SRED, BLUE and SFB. After analyzing it was found that
when RED algorithm was compared with SFQ and REM
it (RED) achieved best result in terms of delay. SFQ had

minimum average ratio and RED had maximum loss
ratio. REM algorithm showed best result with respect to
throughput, loss ratio and link utilization than RED and
SFQ. RED AQM algorithm does not stabilize the queue
size while SRED stabilizes the queue size. RED algo-
rithm monitors the queue length while SRED algorithm
monitors queue length and packet header. BLUE AQM

Uma R. Pujeri, V. Palaniswamy, P. Ramanathan, Ramachandra Pujeri

Indian Journal of Science and Technology 11Vol 8 (35) | December 2015 | www.indjst.org

algorithm greatly reduces the buffer requirement needed
to support differentiate service. FRED AQM algorithm
records per active flow information. SFB statistically mul-
tiplex buffer to bins, but need to be reconfigured with
large number of non-responsive flows. This paper tries to
compare each AQM algorithm and projects the desirable
quality and short comings that exists in each algorithm of
their performance. After performing a comparative anal-
ysis it was observed that no single congestion control can
solve all of the problems hence more research is needed to
be carried out in this area.

4.1  Future Work:
We have planned to develop a new algorithm by doing
hybridization of RED, REM, SFB, BLUE AQM algorithm
so that the new algorithm can take the advantages of the
existing algorithms and provide a better result.

5.  References
1.	 Floyd S, Jacobson V. Random Early Detection gateways

for congestion avoidance. IEEE/ACM Transactions on
Networking. 1993 Aug; 1(4):397–413.

2.	 Ismail AH, Elsagheer Z, Morsi IZ. Survey on Random
Early Detection mechanism and its variants. IOSR Journal
of Computer Engineering (IOSRJCE). 2012 July-Aug;
2(6):20–4. ISSN: 2278-0661.

3.	 Patel SP, Gupta K, Garg A, Mehrotra P, Chhabra M.
Comparative analysis of congestion control algorithms
using ns-2. IJCSI International Journal of Computer Science
Issues. 2011 Sep; 8(5(1)):89–94.

4.	 Ahammed GFA, Banu R. Analyzing the performance of
active queue management algorithm. International Journal
of Computer Networks and Communications (IJCNC).
2010 Mar; 2(2):1–19.

5.	 Kiruthiga B, Raj EGDP. Survey on AQM congestion control
algorithms. International Journal of Computer Science and
Mobile Applications. 2014 Feb; 2(2):38–44.

6.	 Lin D, Morris R. Dynamics of Random Early Detection.
Proceedings of SIGCOMM’ 97. 1997 Oct; 27(4):127–37.

7.	 Adams R. Active Queue Management: A Survey.
IEEE Communications Surveys and Tutorials. 2013;
15(3):1425–76.

8.	 Ratneshwer VK. A review of router based congestion con-
trol algorithms. I.J Computer Network and Information
Security. 2014; 1:1–10.

9.	 Socrates C, Devamalar PM, Sridharan RK. Congestion con-
trol for packet switched networks: A survey. International
Journal of Scientific and Research Publications. 2014 Dec;
4(12):1–6.

10.	 Li M, Wang H. Study of active queue management algo-
rithms -Towards stabilize and high link utilization in
communication magazine. IEEE. 2002 Jun.

11.	 Ott TJ, Lakshman TV, Wong LH. SRED: Stabilized RED.
INFOCOM 99 Eighteenth Annual Joint Conference of the
IEEE Computer and Communication Societies Proceedings
IEEE. 1999 Mar 21-25; 3: p. 1346–55.

12.	 Santhi V, Natarajan AM. Performance analysis of active
queue management algorithms. International Journal on
Information Sciences and Computing. 2009 Jan; 3(1).

13.	 Meckenney PE. Stochastic fair queueing. Proceeding of
INFCOM: San Francisco, CA; 1990 Jun 3-7. p. 733–40.

14.	 Nejakar SM, Sharanabasappa RR, Harshavardhan DR.
Development of modified RED AQM algorithm in com-
puter network for congestion control. International Journal
of Innovative Research in Advanced Engineering (IJIRAE).
2014 Sep; 1(8):380–5.

15.	 Feng WC, Shin KG, Kandlur DD, Saha D. The BLUE active
queue management algorithms. IEEE/ACM Transactions
on Networking. 2002 Aug; 10(4):513–28.

16.	 Athuraliya S, Li VH, Low SH, Yin Q. REM: Active Queue
Management. IEEE Network. 2001 May-Jun; 48–53.

17.	 Lin D, Morris R. Dynamics of Random Early Detection.
Proceedings of ACM SIGCOMM 97 Cannes France. 1997
Oct; 27(4): p. 127–37.

18.	 Yang C, Reddy A. A taxonomy for congestion control algo-
rithms in packet switching networks. Network. IEEE. 1995
July/Aug; 9(4):34–45.

19.	 Ryu S, Rump C, Qiao C. Advances in Active Queue
Management (AQM) based TCP congestion control.
Telecommunication Systems - Modeling, Analysis, Design
and Management. 2004 Mar; 25(3):317–51.

20.	 Feng G, Agarwal A, Jayaraman A, Siew C. Modified RED
gateways under bursty traffic. IEEE Communications
Letters. 2004 May; 8(5):323–5.

21.	 Hollot C, Liu Y, Misra Y, Towsley D. Unresponsive flows
and AQM performance. Proceedings of the Twenty-
second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE INFOCOM): San
Francisco, CA, USA; 2003 Mar 30-Apr 3, p. 85–95.

22.	 Nabeshima M. Improving the performance of active
buffer management with per-flow information. IEEE
Communications Letters. 2002 Jul; 6(7):306–8.

23.	 Claypool M, Kinicki R, Hartling M. Active Queue
Management for Web traffic. Proceedings of the
IEEE International Performance, Computing and
Communications Conference.: 2004 Apr p. 14–7.

24.	 Ziegler T. On averaging for active queue management con-
gestion avoidance. Proceedings of the Seventh International
Symposium on Computers and Communications (ISCC):
Taormina-Giardini Naxos, Italy: 2002. p. 867–73.

Comparative Analysis and Comparison of Various AQM Algorithm for High Speed

Indian Journal of Science and Technology12 Vol 8 (35) | December 2015 | www.indjst.org

25.	 Aweya J, Ouellette M, Montuno D, Chapman A. An
adaptive buffer management mechanism for improving
TCP behavior under heavy load. Proceedings of the IEEE
International Conference on Communications: Helsinki;
2001.p. 3217–23.

26.	 Low S. A duality model of TCP and queue management
algorithms. IEEE/ACM Transactions on Networking. 2003
Aug; 11(4):525–36.

27.	 Zhu C, Yang OWW, Aweya J, Ouellette M, Montuno DY. A
comparison of Active Queue Management algorithm using

OPNET modeler. Best paper award in OPNET 2001. 2002
Jun; 40(6):158–67.

28.	 Indumati P, Shanmugel S, Mahesh HC. Buffered leaky
bucket algorithm for congestion control in ATM network.
IETE Journal of Research. 2002; 48(1):59–67.

29.	 On 3026 Jul. Available from: sred.cchttps://www.cs.purdue.
edu/homes/fahmy/software/aqm/sred.cc

30.	 2015 May. Avaulable from: fred.cchttps://www.cs.purdue.
edu/homes/fahmy/software/aqm/fred.c

