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Abstract 

Today central topic in science and engineering is parallel and distributed computing, research performing in the area of 

development of new approaches for the modeling, design, analysis, evaluation, and programming of future parallel and 

distributed computing systems and its applications. To detect the presence of dependency between tasks, analytic methodology is

required.  This review theoretically analyzes what is dependency, different types of dependencies, various applications which 

require dependency analysis and different approaches towards dependency analysis. This research classifies dependency analysis 

approaches on the basis of input source; for different input source different methodology is available, this review considers an

input source as a component base system with dependent components. This research gives review of dependency analysis 

solutions for various areas like parallel processing, high performance computing, security and vulnerability in software’s where

various approaches are used for dependency analysis. This review concludes that there are various methods available for 

dependency analysis. Most of the methods use graph base approach, conceptual graph approach and matrix based approach, out 

of which this review puts forward the best possible approach. This research proposes a new approach for dependency analysis 

which results in the reduced dependent analysis time, low memory consumption and less cost sensitive. 
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1. Introduction

As the social universality of automated systems increases, the demand for new systems and enhancements 
to existing systems also increases. So the application level analysis of system is required. Dependency analysis is 
concerned about dependencies due to interconnections between system components. Dependency analysis is also an 
important aspect of any parallel programming tool. Its area has served as grounds for fruitful research in parallel 
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computing, high performance computing and software engineering. 
In parallel computing two issues are essentially concerned and equally important is the partitioning method 

as well as scheduling and distribution policy of subtasks (reordering). Security is a major concern in scheduling and 
distribution. Dependency analysis is also used to compute user dependencies for security and vulnerability.

Definitions of dependency given in the literature are varying widely. One of the first definitions of 
dependency in the literature was proposed 40 years back by Stevens.et.al (1974) 1 as - a dependency is the degree to 
which each component relies on each one of the other components. Some sources mention that dependencies are 
simply first-order logic formulae. Some take a probabilistic approach for defining the dependencies and express 
dependencies as conditional probabilities between some specific variables. Some sources state an approach that a 
dependency is best modelled by using the client/server relationship, and then propose the definition of dependency 
in client/server terms. In general case, dependency is defined as a relation D 2, between some numbers of entities 
where in a change to one of the entity implies a potential change to the others as shown in Fig 1.  

                                              (a) 
                                              (b) 

 Fig1. Graphical representation of the dependencies  
 1(a) Simple dependency between two tasks; 1(b) Bi-directional dependency between two tasks 

In case of parallel processing, more dependencies imply more access time or more inter-processor 
communication. This degrades the overall performance of the system. In software engineering, analysis of 
dependencies is very important in its every phase; from planning to design and also in maintenance of the system3.

The structure of the paper is as follows: Section 2 gives an overview of classifications of types of 
dependencies. In section 3 gives application areas where dependency analysis is required. In section 4 discusses 
classification depending on the input source; for different dependency analysis approaches as code based, model 
based and run-time analysis. Section 5 gives an overview of existing available dependence analysis approaches and 
comparative study; in section 6 proposal of dependency analysis system. Section 7 discusses expected outcome and 
conclusion. 

1.1. Motivating example 

Example 1: 

Statement 0:  X=X1+X2 

Statement 1: Y= Y1+Y2 

Statement 2: Z= Z1+Z2 

                  (a) 

Example 2: 

Statement 0: X=X1+X2 

Statement 1: Y= Y1+Y2+X 

Statement 2: Z= Z1+Z2 

Statement 3: Q = X+Y+Z 

                  ( b) 

Example illustrated in Fig. 2(a) demonstrates a code where every 

statement is depends on its predecessor; all statements have to be 

executed sequentially as there is no parallelism possible. In 

contrast code from Fig. 2(b) has ample amount of parallelism 

possible. Here two operations do not depend on any other 

operations and can be executed in parallel. In order to achieve 

parallelism, statements have to be reordered and scheduled. 

While reordering, correctness has to be maintained regarding 

dependencies. Here we used dependency analysis approaches. 

Fig 2. Motivating example 

2.  Classifying dependencies  

Different dependency types have been proposed in various dependency models over the years. They have 
different level of abstraction and criteria for categorization. For varying areas different dependency categorizations 
are available. Some sources specify types of dependency as structural and functional dependencies or data and value 
dependencies; similarly somewhere dependency types are classified into intrinsic and additional dependencies on 
the top level. This paper considers generic type of dependencies; which are classified into three broad categories that 
is structural dependency, behavioural dependency and traceability dependency.  

2.1. Structural dependency

Structural dependencies allow one to locate source specifications that contribute to the description of some state 
or interaction. Several subcategories that come under structural dependency are Content Dependencies, Common 
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Dependencies, External dependencies, Control dependency and data dependencies. 

2.2. Behavioural dependency 

Behavioural dependencies consent one to relate states or interactions to other states or interactions. Behavioural 
dependency consists of abstractions which are not directly provided by programming languages; Example, external 
programs or devices, event broadcast, client-server protocols etc. Behavioural dependence analysis is traditionally 
used to perform risk analysis, fault tolerance and redundancy provisions in distributed real time systems. 
Traditionally, most behavioural dependencies are found by inspecting the source code directly or by analyzing 
execution traces of system 4.

2.3. Traceability dependency

 Traceability supports the alignment between various stakeholder concerns, development artefacts and different 
products of the software development process. Developer cannot ignore requirements after the design is built nor 
can ignore the design after the source code is programmed, as software development is a continuous process5.
Therefore it is required for developers to maintain inter-relationships between different artefacts. These inter-
relationships are specifically called traceability dependencies. 

3.  Application areas where dependency analysis required 

Dependency analysis addresses issues in various contexts of developing systems like in; Software engineering 
for program understanding, testing, debugging, reverse engineering6 and maintenance. In natural language 
processing dependency analysis is required for parsing, construction of dependency tree and relation extraction 
(RE)7. In image processing for decoding image and video bit streams with maximum concurrency8.In databases and 
data structures for data normalization9. In distributed services to identify how the failure of one process can 
potentially affect other concurrently executing processes. In signal processing for repetitive structure modelling 
(RSM) to inherit parallelism dependency analysis is required10. Dependency analysis is mainly required in compilers 
for code level parallelization, optimizing and parallelizing compilers. 

4. Classification of dependency analysis approaches  

Here classification of dependency analysis approaches is done according to their type of input source of 
information, which is different scale of granularity e.g. instructions, basic blocks, function calls, etc.  Dependency 
analysis approaches take the source of information as input data and transform this information into high level 
abstract information. This high level information is then used to reason about the dependencies and to solve 
dependency issues in the various application areas. The information can be in the form of graph, matrix or table that 
can represent dependencies in a system. Depending upon input source existing analysis approaches are classified 
into three groups; code base approach, component base approach, and run-time analysis approach. 

 In first code based approach, analysis approach is applied to program or code (instructions); where 
relationships among statements, loops and variables in a program are considered. Source code based solutions can 
be applied to parallelize legacy sequential code for better utilization of processor, for parallelizing compilers and for 
natural language processing systems 11.

In second model base approach communication/interaction between models are considered. System is 
represented using model based representation that provides more specific information about the dependency. Model 
based approaches are used in parallelizing the systems, in automatically partitioning softwares 5, and in application 
level analysis and management of the system.

In third; run-time analysis approach, applications those require runtime monitoring of the objects to detect 
dependencies are considered. Both code base and model base approaches are used for runtime analysis 12.

4.1. Code base approaches  

Code base is the most well known source used by dependency analysis solutions. Both syntactic and 

semantic information gives detail about the code components (e.g. variables, operations, methods, classes) and 

relationships among them. Source code based approaches are often used to analyze the structural dependencies at 
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different levels of abstractions like statement level and module level 13. The various methods available are static 

analysis, dynamic analysis and historical analysis.  

Table 1- Code based dependency analysis methods 

Tests for code base 

analysis 
Advantages Limitations 

GCD Test 
Simple and efficient at disproving 

dependencies. 

Inexact test, ignores loop limit and inequality constraints 

Does not provide direction vector information. 

Banerjee Test 

Simple test and efficient at disproving 

dependencies and generates direction vector 

information. 

Approximate test 

It takes only single subscript of a multi-dimensional array. 

I-test 

Includes all the advantages of GCD and 

Banerjee test and extends the range of 

applicability of Banerjee test. 

Constraint of each variable has to be integer, 

Cannot handle multi-dimensional array references involving coupled 

subscripts

PVI test Applicable for nonlinear subscripts Lowers efficiency when mixed polynomial exists  

Quadratic

programming test 

Exact test and works efficiently for mixed 

polynomials. 

Time complexity is high 

Coefficient matrix of quadratic terms should be positive semi-definite. 

4.2. Component based approach

In Component base approach, mainly workflow of an application considered. Workflow of an application 
means the atomic computation units and their data dependencies. This approach takes models of system as an input; 
this model can be in the form of UML models or architectural description language (ADL), Interface description 
language (IDL) that describe structure and behaviour of system. Different kinds of graph methods are used for 
representing these kinds of systems, where the communication among functions in a program forms a graph, where 
nodes are represented by functions and edges shows communication among functions. 

Table 2- Component based dependency analysis methods   

Method used 
Type of 

analysis 
Highlights 

Directed Acyclic Graph 

(DAG) and Hierarchical  

DAG 

Static/

Dynamic 

Used to represent dependencies between tasks and entities. Provides directions of the 

dependency relationship. Nodes represent task/entity and arcs represent dependency relation 

between nodes.  Compared to normal DAG hierarchical DAG provides more accuracy. 

Matrix Representation and 

Adjacent Matrix 

Representation 

Static 
Traditional graph theory combined with matrix representation is able to determine whether the 

components are dependent or not. Adjacent matrix is used to represent directed graphs. 

Conceptual Graphs 
Static,

Dynamic 

Provides more detail information about the dependence relation. 

It is scalable. 

 Data flow Graphs (DFG) Static It is usually very large and contains lot of inter dependencies. 

 Dynamic data flow Graphs 

(DDFG) 
Dynamic 

Graph constructed at runtime, is analyzed subset of the full graph with possible execution path 

and improves along with iterations of execution. It can exploit more parallelism. 

4.3. Run-time analysis approach  

In this approach execution information of code or component based system is considered for analysis. So there 

is an additional overhead required in gathering execution related information about the system. These approaches 

can identify dependencies without accessing the actual source code [14]. Run-time monitored information includes 

tracking of events that occur at runtime. This information can be generated by using some system infrastructure or 

with trace generator facilities. Runtime dependencies between features are difficult to spot by just inspecting the 

source code, as modifications performed on one part of code may affect other features.

5.  Related work and comparative study 

As discussed in the previous section there are many types of dependencies in various areas. There are 
various approaches like DAG, Matrix representations, databases, which are used to show communications and 
transmissions between models. Literature shows various varieties with graph approach and matrix approach some 
are mentioned below: 
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EasyPar15 is an intelligent analysis engine for parallelization having unique features to assist the 

programmer at the time of program development. It uses query based data dependency analysis method for 

dependency analysis. This database approach has three benefits it makes incremental parsing easier and faster, 

efficient dependency analysis and demand driven program analysis. This method is not generalized for all 

algorithms.  Parwiz16 is a framework to capture all data dependencies for parallelization, where vector technique and 

call graph are used for dependence analysis. It analyzes dependency dynamically at run time. This combination is 

important for lowering the cost of empirical analysis but it is time and memory consuming methodology compared 

to query based data dependency analysis.

StarSs17 is another programming model for parallel programming; it is able to detect task dependencies 
automatically. Another specific feature of the current CellSs/ SMPSs implementations is the automatic detection of 
data dependencies between tasks and runtimes classifying the type of data dependency like read after write (RaW), 
write after write (WaW) and write after read (WaR). It has overhead of additional usage of memory and processing 
time. This is not a suitable approach for an application consisting more of parallelization. Fully automatic tools have 
many limitations compared to semiautomatic or manual approach that is low efficiency and lack of interaction with 
the user. 

Dependency can also be analyzed using metadata and its buffer dynamically at runtime. In 18 Potential thread-level-
parallelism exploration with superblock reordering; dynamic data dependencies are analyzed. In this approach the 
dynamic data flow graph (DDFG) of sequential programs are analyzed for dependency analysis. DDFG exploits 
more parallelism. Some parallelism can only be identified by dynamic analysis.

Directed acyclic graph (DAG) method for finding dependencies between tasks is used in literature 19, 20.
DAG can be improved to the multilevel DAG, to hierarchically represent dependency relationships of data at 
different levels. Hierarchical DAG improves the performance of the system compared to simple DAG but additional 
spaces saving techniques are required to be integrated for improving performance of the system. DAG is also found 
to be good solution for scheduling of the task for parallel processing, load balancing, and spatial decomposition.  On 
the similar lines for concurrency; literature 21 introduced special logic for true concurrency, which allows prediction 
of mutual dependencies between events.

Conceptual Graphs provide a powerful approach to represent, characterize, and analyze dependencies 
between the entities in a model base dependency analysis 22. Dependencies are mapped into conceptual graphs. Fig 1 
depicts a dependency in graphical form. Conceptual dependency graphs are relationally expanded to include 
attributes of dependency. A conceptual graph allows representation of more specific information about the 
dependency. One of the advantages of conceptual graphs representation is its scalability. It is useful for applications 
where we require more knowledge about dependency. There were many dependency types mentioned in the 
literature from various points of interest, but there is still lack of assessment in the applicability of different 
dependency types in software engineering 23.

Dependency is a represented using adjacency matrix in graph theory. This representation can check 
presence of dependency between the components. It does not consider type of interaction between components. One 
more dependency representation methodology is link-list based dependency representation 24. This can be 
implemented using Hash Map in Java; which provides more information about the dependency relation. This 
information can be used to solve dependency related issues. This approach is more efficient and faster than matrix 
based approach.  

6.  Proposed system 

The main module of proposed system includes trace collection, dependency analysis, and graph representation 

of analyzed code. Input code is parsed and split into tokens. These tokens contain information about program 

constructs. This information is then used for further analysis. The next phase obtains execution traces from the input 

code. The trace collector takes parsed program constructs and compiled code as an input and generates execution 

traces. These traces gives information about the run time occurred traces of code. Dependency analysis detects 

dependencies out of these traces i.e. execution traces are analyzed for identifying available dependencies. 

Dependency analysis output generates an intermediate representation in the form of dependence graph. Graph 

generation module is concerned about creation of graph for dependent components of code and storing this graph in 

the memory in an effective manner. The main aim here for analyzing dependencies is to provide parallel 

computation of code. So based on the analyzed output independent streams are executed in parallel which results in 

improved processing time of system.
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Fig 3. Proposed dependency analysis model  

7.    Discussion and conclusion 

Dependency analysis is an important factor in various areas like parallel processing, high performance 
computing, in natural language processing, parallelizing compilers, for service oriented architecture and almost in 
all phases of software engineering. There are various dependency analysis approaches based on the type of input and 
level of abstraction considered for analyzing dependencies. All such approaches are discussed in paper along with 
their way of analysis. These methods have their own advantages and limitation when applied in practice. So this 
results in a need to develop a novel method that will give improved performance for automatic dependency 
identification and analysis.

This initial research indicates that dependency analysis representation using conceptual graph is a more general 

and effective approach for analyzing dependencies. Conceptual Graphs provide a powerful way to represent, 

characterize, and analyze dependencies between the entities in the system. Using Conceptual Graphs, proposal of 

easier way to model entities, compared to matrix method and directed acyclic graphs method at different levels of 

abstraction. This paper proposes a system; which provides a new approach for dependency analysis and results in 

the reduced dependent analysis time, low memory consumption and less cost sensitive.  
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