
 Procedia Computer Science 78 (2016) 831 – 837

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of organizing committee of the ICISP2015

doi: 10.1016/j.procs.2016.02.067

ScienceDirect

International Conference on Information Security & Privacy (ICISP2015), 11-12 December 2015,
Nagpur, INDIA

Dependency Analysis for Secured Code Level Parallelization

Vandana Jagtap
a,

 , Urmila Shrawankar
b

 a Research Scholar, SGB Amravati University, Amravati, India

 b G. H.. Raisoni College of engineering, Nagpur, India

Abstract

Today central topic in science and engineering is parallel and distributed computing, research performing in the area of

development of new approaches for the modeling, design, analysis, evaluation, and programming of future parallel and

distributed computing systems and its applications. To detect the presence of dependency between tasks, analytic methodology is

required. This review theoretically analyzes what is dependency, different types of dependencies, various applications which

require dependency analysis and different approaches towards dependency analysis. This research classifies dependency analysis

approaches on the basis of input source; for different input source different methodology is available, this review considers an

input source as a component base system with dependent components. This research gives review of dependency analysis

solutions for various areas like parallel processing, high performance computing, security and vulnerability in software’s where

various approaches are used for dependency analysis. This review concludes that there are various methods available for

dependency analysis. Most of the methods use graph base approach, conceptual graph approach and matrix based approach, out

of which this review puts forward the best possible approach. This research proposes a new approach for dependency analysis

which results in the reduced dependent analysis time, low memory consumption and less cost sensitive.

© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the ICISP2015

Keywords: Data dependency; dependency type; parallel Computing; high performance computing; dynamic analysis; directed acyclic graph.

1. Introduction

As the social universality of automated systems increases, the demand for new systems and enhancements
to existing systems also increases. So the application level analysis of system is required. Dependency analysis is
concerned about dependencies due to interconnections between system components. Dependency analysis is also an
important aspect of any parallel programming tool. Its area has served as grounds for fruitful research in parallel

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the ICISP2015

832 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

computing, high performance computing and software engineering.
In parallel computing two issues are essentially concerned and equally important is the partitioning method

as well as scheduling and distribution policy of subtasks (reordering). Security is a major concern in scheduling and
distribution. Dependency analysis is also used to compute user dependencies for security and vulnerability.

Definitions of dependency given in the literature are varying widely. One of the first definitions of
dependency in the literature was proposed 40 years back by Stevens.et.al (1974) 1 as - a dependency is the degree to
which each component relies on each one of the other components. Some sources mention that dependencies are
simply first-order logic formulae. Some take a probabilistic approach for defining the dependencies and express
dependencies as conditional probabilities between some specific variables. Some sources state an approach that a
dependency is best modelled by using the client/server relationship, and then propose the definition of dependency
in client/server terms. In general case, dependency is defined as a relation D 2, between some numbers of entities
where in a change to one of the entity implies a potential change to the others as shown in Fig 1.

 (a)
 (b)

 Fig1. Graphical representation of the dependencies
 1(a) Simple dependency between two tasks; 1(b) Bi-directional dependency between two tasks

In case of parallel processing, more dependencies imply more access time or more inter-processor
communication. This degrades the overall performance of the system. In software engineering, analysis of
dependencies is very important in its every phase; from planning to design and also in maintenance of the system3.

The structure of the paper is as follows: Section 2 gives an overview of classifications of types of
dependencies. In section 3 gives application areas where dependency analysis is required. In section 4 discusses
classification depending on the input source; for different dependency analysis approaches as code based, model
based and run-time analysis. Section 5 gives an overview of existing available dependence analysis approaches and
comparative study; in section 6 proposal of dependency analysis system. Section 7 discusses expected outcome and
conclusion.

1.1. Motivating example

Example 1:

Statement 0: X=X1+X2

Statement 1: Y= Y1+Y2

Statement 2: Z= Z1+Z2

 (a)

Example 2:

Statement 0: X=X1+X2

Statement 1: Y= Y1+Y2+X

Statement 2: Z= Z1+Z2

Statement 3: Q = X+Y+Z

 (b)

Example illustrated in Fig. 2(a) demonstrates a code where every

statement is depends on its predecessor; all statements have to be

executed sequentially as there is no parallelism possible. In

contrast code from Fig. 2(b) has ample amount of parallelism

possible. Here two operations do not depend on any other

operations and can be executed in parallel. In order to achieve

parallelism, statements have to be reordered and scheduled.

While reordering, correctness has to be maintained regarding

dependencies. Here we used dependency analysis approaches.

Fig 2. Motivating example

2. Classifying dependencies

Different dependency types have been proposed in various dependency models over the years. They have
different level of abstraction and criteria for categorization. For varying areas different dependency categorizations
are available. Some sources specify types of dependency as structural and functional dependencies or data and value
dependencies; similarly somewhere dependency types are classified into intrinsic and additional dependencies on
the top level. This paper considers generic type of dependencies; which are classified into three broad categories that
is structural dependency, behavioural dependency and traceability dependency.

2.1. Structural dependency

Structural dependencies allow one to locate source specifications that contribute to the description of some state
or interaction. Several subcategories that come under structural dependency are Content Dependencies, Common

833 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

Dependencies, External dependencies, Control dependency and data dependencies.

2.2. Behavioural dependency

Behavioural dependencies consent one to relate states or interactions to other states or interactions. Behavioural
dependency consists of abstractions which are not directly provided by programming languages; Example, external
programs or devices, event broadcast, client-server protocols etc. Behavioural dependence analysis is traditionally
used to perform risk analysis, fault tolerance and redundancy provisions in distributed real time systems.
Traditionally, most behavioural dependencies are found by inspecting the source code directly or by analyzing
execution traces of system 4.

2.3. Traceability dependency

 Traceability supports the alignment between various stakeholder concerns, development artefacts and different
products of the software development process. Developer cannot ignore requirements after the design is built nor
can ignore the design after the source code is programmed, as software development is a continuous process5.
Therefore it is required for developers to maintain inter-relationships between different artefacts. These inter-
relationships are specifically called traceability dependencies.

3. Application areas where dependency analysis required

Dependency analysis addresses issues in various contexts of developing systems like in; Software engineering
for program understanding, testing, debugging, reverse engineering6 and maintenance. In natural language
processing dependency analysis is required for parsing, construction of dependency tree and relation extraction
(RE)7. In image processing for decoding image and video bit streams with maximum concurrency8.In databases and
data structures for data normalization9. In distributed services to identify how the failure of one process can
potentially affect other concurrently executing processes. In signal processing for repetitive structure modelling
(RSM) to inherit parallelism dependency analysis is required10. Dependency analysis is mainly required in compilers
for code level parallelization, optimizing and parallelizing compilers.

4. Classification of dependency analysis approaches

Here classification of dependency analysis approaches is done according to their type of input source of
information, which is different scale of granularity e.g. instructions, basic blocks, function calls, etc. Dependency
analysis approaches take the source of information as input data and transform this information into high level
abstract information. This high level information is then used to reason about the dependencies and to solve
dependency issues in the various application areas. The information can be in the form of graph, matrix or table that
can represent dependencies in a system. Depending upon input source existing analysis approaches are classified
into three groups; code base approach, component base approach, and run-time analysis approach.

 In first code based approach, analysis approach is applied to program or code (instructions); where
relationships among statements, loops and variables in a program are considered. Source code based solutions can
be applied to parallelize legacy sequential code for better utilization of processor, for parallelizing compilers and for
natural language processing systems 11.

In second model base approach communication/interaction between models are considered. System is
represented using model based representation that provides more specific information about the dependency. Model
based approaches are used in parallelizing the systems, in automatically partitioning softwares 5, and in application
level analysis and management of the system.

In third; run-time analysis approach, applications those require runtime monitoring of the objects to detect
dependencies are considered. Both code base and model base approaches are used for runtime analysis 12.

4.1. Code base approaches

Code base is the most well known source used by dependency analysis solutions. Both syntactic and

semantic information gives detail about the code components (e.g. variables, operations, methods, classes) and

relationships among them. Source code based approaches are often used to analyze the structural dependencies at

834 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

different levels of abstractions like statement level and module level 13. The various methods available are static

analysis, dynamic analysis and historical analysis.

Table 1- Code based dependency analysis methods

Tests for code base

analysis
Advantages Limitations

GCD Test
Simple and efficient at disproving

dependencies.

Inexact test, ignores loop limit and inequality constraints

Does not provide direction vector information.

Banerjee Test

Simple test and efficient at disproving

dependencies and generates direction vector

information.

Approximate test

It takes only single subscript of a multi-dimensional array.

I-test

Includes all the advantages of GCD and

Banerjee test and extends the range of

applicability of Banerjee test.

Constraint of each variable has to be integer,

Cannot handle multi-dimensional array references involving coupled

subscripts

PVI test Applicable for nonlinear subscripts Lowers efficiency when mixed polynomial exists

Quadratic

programming test

Exact test and works efficiently for mixed

polynomials.

Time complexity is high

Coefficient matrix of quadratic terms should be positive semi-definite.

4.2. Component based approach

In Component base approach, mainly workflow of an application considered. Workflow of an application
means the atomic computation units and their data dependencies. This approach takes models of system as an input;
this model can be in the form of UML models or architectural description language (ADL), Interface description
language (IDL) that describe structure and behaviour of system. Different kinds of graph methods are used for
representing these kinds of systems, where the communication among functions in a program forms a graph, where
nodes are represented by functions and edges shows communication among functions.

Table 2- Component based dependency analysis methods

Method used
Type of

analysis
Highlights

Directed Acyclic Graph

(DAG) and Hierarchical

DAG

Static/

Dynamic

Used to represent dependencies between tasks and entities. Provides directions of the

dependency relationship. Nodes represent task/entity and arcs represent dependency relation

between nodes. Compared to normal DAG hierarchical DAG provides more accuracy.

Matrix Representation and

Adjacent Matrix

Representation

Static
Traditional graph theory combined with matrix representation is able to determine whether the

components are dependent or not. Adjacent matrix is used to represent directed graphs.

Conceptual Graphs
Static,

Dynamic

Provides more detail information about the dependence relation.

It is scalable.

 Data flow Graphs (DFG) Static It is usually very large and contains lot of inter dependencies.

 Dynamic data flow Graphs

(DDFG)
Dynamic

Graph constructed at runtime, is analyzed subset of the full graph with possible execution path

and improves along with iterations of execution. It can exploit more parallelism.

4.3. Run-time analysis approach

In this approach execution information of code or component based system is considered for analysis. So there

is an additional overhead required in gathering execution related information about the system. These approaches

can identify dependencies without accessing the actual source code [14]. Run-time monitored information includes

tracking of events that occur at runtime. This information can be generated by using some system infrastructure or

with trace generator facilities. Runtime dependencies between features are difficult to spot by just inspecting the

source code, as modifications performed on one part of code may affect other features.

5. Related work and comparative study

As discussed in the previous section there are many types of dependencies in various areas. There are
various approaches like DAG, Matrix representations, databases, which are used to show communications and
transmissions between models. Literature shows various varieties with graph approach and matrix approach some
are mentioned below:

835 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

EasyPar15 is an intelligent analysis engine for parallelization having unique features to assist the

programmer at the time of program development. It uses query based data dependency analysis method for

dependency analysis. This database approach has three benefits it makes incremental parsing easier and faster,

efficient dependency analysis and demand driven program analysis. This method is not generalized for all

algorithms. Parwiz16 is a framework to capture all data dependencies for parallelization, where vector technique and

call graph are used for dependence analysis. It analyzes dependency dynamically at run time. This combination is

important for lowering the cost of empirical analysis but it is time and memory consuming methodology compared

to query based data dependency analysis.

StarSs17 is another programming model for parallel programming; it is able to detect task dependencies
automatically. Another specific feature of the current CellSs/ SMPSs implementations is the automatic detection of
data dependencies between tasks and runtimes classifying the type of data dependency like read after write (RaW),
write after write (WaW) and write after read (WaR). It has overhead of additional usage of memory and processing
time. This is not a suitable approach for an application consisting more of parallelization. Fully automatic tools have
many limitations compared to semiautomatic or manual approach that is low efficiency and lack of interaction with
the user.

Dependency can also be analyzed using metadata and its buffer dynamically at runtime. In 18 Potential thread-level-
parallelism exploration with superblock reordering; dynamic data dependencies are analyzed. In this approach the
dynamic data flow graph (DDFG) of sequential programs are analyzed for dependency analysis. DDFG exploits
more parallelism. Some parallelism can only be identified by dynamic analysis.

Directed acyclic graph (DAG) method for finding dependencies between tasks is used in literature 19, 20.
DAG can be improved to the multilevel DAG, to hierarchically represent dependency relationships of data at
different levels. Hierarchical DAG improves the performance of the system compared to simple DAG but additional
spaces saving techniques are required to be integrated for improving performance of the system. DAG is also found
to be good solution for scheduling of the task for parallel processing, load balancing, and spatial decomposition. On
the similar lines for concurrency; literature 21 introduced special logic for true concurrency, which allows prediction
of mutual dependencies between events.

Conceptual Graphs provide a powerful approach to represent, characterize, and analyze dependencies
between the entities in a model base dependency analysis 22. Dependencies are mapped into conceptual graphs. Fig 1
depicts a dependency in graphical form. Conceptual dependency graphs are relationally expanded to include
attributes of dependency. A conceptual graph allows representation of more specific information about the
dependency. One of the advantages of conceptual graphs representation is its scalability. It is useful for applications
where we require more knowledge about dependency. There were many dependency types mentioned in the
literature from various points of interest, but there is still lack of assessment in the applicability of different
dependency types in software engineering 23.

Dependency is a represented using adjacency matrix in graph theory. This representation can check
presence of dependency between the components. It does not consider type of interaction between components. One
more dependency representation methodology is link-list based dependency representation 24. This can be
implemented using Hash Map in Java; which provides more information about the dependency relation. This
information can be used to solve dependency related issues. This approach is more efficient and faster than matrix
based approach.

6. Proposed system

The main module of proposed system includes trace collection, dependency analysis, and graph representation

of analyzed code. Input code is parsed and split into tokens. These tokens contain information about program

constructs. This information is then used for further analysis. The next phase obtains execution traces from the input

code. The trace collector takes parsed program constructs and compiled code as an input and generates execution

traces. These traces gives information about the run time occurred traces of code. Dependency analysis detects

dependencies out of these traces i.e. execution traces are analyzed for identifying available dependencies.

Dependency analysis output generates an intermediate representation in the form of dependence graph. Graph

generation module is concerned about creation of graph for dependent components of code and storing this graph in

the memory in an effective manner. The main aim here for analyzing dependencies is to provide parallel

computation of code. So based on the analyzed output independent streams are executed in parallel which results in

improved processing time of system.

836 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

Fig 3. Proposed dependency analysis model

7. Discussion and conclusion

Dependency analysis is an important factor in various areas like parallel processing, high performance
computing, in natural language processing, parallelizing compilers, for service oriented architecture and almost in
all phases of software engineering. There are various dependency analysis approaches based on the type of input and
level of abstraction considered for analyzing dependencies. All such approaches are discussed in paper along with
their way of analysis. These methods have their own advantages and limitation when applied in practice. So this
results in a need to develop a novel method that will give improved performance for automatic dependency
identification and analysis.

This initial research indicates that dependency analysis representation using conceptual graph is a more general

and effective approach for analyzing dependencies. Conceptual Graphs provide a powerful way to represent,

characterize, and analyze dependencies between the entities in the system. Using Conceptual Graphs, proposal of

easier way to model entities, compared to matrix method and directed acyclic graphs method at different levels of

abstraction. This paper proposes a system; which provides a new approach for dependency analysis and results in

the reduced dependent analysis time, low memory consumption and less cost sensitive.

References

1. Trosky B, Callo Arias, Pieter van der Spek and Paris Avgeriou. A practice-driven systematic review of dependency analysis solution.

Empir Software Eng , Springer Journal , 2011, DOI 10.1007/s10664-011-9158-8.

2. Angeles Navarro, Francisco Corbera, Rafael Asenjo, Rosa Castillo, Emilio L. Zapata. A data dependence test based on the projection

of paths over shape graphs. Elsevier Journal of Parallel Distributed Computing, 72(2012)1547-1564,

DOI:10.1016/j.jpdc.2012.08.004.

3. Sudhakar Sah, Vinay G. Vaidya . New Approach to Speedup Dynamic Program Parallelization Analysis. ACM Journal, Published in:

international Journal of Software Innovation , Volume 2 Issue 4, October 2014, 28-47, IGI Publishing Hershey, PA, USA, DOI:

10.4018/ijsi.2014100103.

4. He Zhang, Juan Li , Liming Zhu, Ross Jeffery , Yan Liu , Qing Wang and Mingshu Li. Investigating dependencies in software

requirements for change propagation analysis. Journal on Information and Software Technology, 2013 Elsevier,

http://dx.doi.org/10.1016/j.infsof.2013.07.001.

5. Yongzheng Wu and Jun Sun, Yang Liu, Jin Song Dong. Automatically Partition Software into Least Privilege Components using

Dynamic Data Dependency Analysis. IEEE International Conference, ASE 2013, Palo Alto, USA 978-1-4799-0215-6

6. William W. Song, Aijaz Soomro, Yang Li, Qin Liu. A Structural Analysis of SLAs and Dependencies Using Conceptual Modelling

Approach 37th Annual Computer Software and Applications Conference Workshops, 2013 IEEE, DOI

10.1109/COMPSACW.2013.112

7. Mia Kamayani and Ayu Purwarianti. Dependency Parsing for Indonesian. International Conference on Electrical Engineering and

837 Vandana Jagtap and Urmila Shrawankar / Procedia Computer Science 78 (2016) 831 – 837

Informatics Bandung, Indonesia 17-19 July 2011

8. Bart Pieters,Charles-Frederik Hollemeersch, Jan De Cock, Peter Lambert, Rik Van de Walle. Data-parallel intra decoding for block-

based image and video coding on massively parallel architectures. SignalProcessing:ImageCommunication27(2012)220–237, 2012

Elsevier Journal doi:10.1016/j.image.2012.01.001

9. Tadeusz Pankowski, Tomasz Pilka. Dealing with redundancies and dependencies in normalization of XML data. Proceedings of the

International Multi conference on Computer Science and Information Technology pp. 543–550, 2008 IEEE

10. Calin Glitia, Pierre Boulet, Eric Lenormand, Michel Barreteau. Repetitive model refactoring strategy for the design space exploration

of intensive signal processing applications. Journal of Systems Architecture 57 (2011) 815–829,doi:10.1016/j.sysarc.2010.12.002

11. Mihai T. Lazarescu and Luciano Lavagno. Dynamic trace-based data dependency analysis for parallelization of C programs. 12th

International Working Conference on Source Code Analysis and Manipulation, 2012 IEEE, DOI 10.1109/SCAM.2012.15

12. M. A. Hossain, U. Kabirb, M.O. Tokhi. Impact of data dependencies in real-time high performance computing. journal on

Microprocessors and Microsystems, 2002 Elsevier Science

13. J. Zhao, R. Zhao, X Chen, Bo zhao. An improved nonlinear data dependence test. Springer Journal of Supercomputing (2015),

DOI10.1007/s11227-014-1298-3

14. Sudhakar Sah and Vinay G. Vaidya. New Approach to Speedup Dynamic Program Parallelization Analysis. International Journal of

Software Innovation, December 2014, DOI: 10.4018/ijsi.2014100103

15. Alain Ketterlin Philippe Clauss. Profiling Data-Dependence to Assist Parallelization: Framework, Scope, and Optimization.

IEEE/ACM45th Annual International Symposium on Microarchitecture, 2012 IEEE DOI 10.1109/MICRO.2012.47

16. Judit Planas, Rosa M. Badia, Eduard Ayguadé and Jesus Labarta. HIERARCHICAL TASK-BASED PROGRAMMING WITH

STARSS. The International Journal of High Performance Computing Applications, Volume 23, No. 3, 2009, pp.284-299, DOI:

10.1177/1094342009106195

17. John Ye, Hui Yan, Honglun Hou and Tianzhou Chen. Potential thread-level-parallelism exploration with superblock

reordering. Springer-Verlag Wien 2014, DOI 10.1007/s00607-014-0387-8

18. Jeremy Villalobos and Barry Wilkinson. Using Hierarchical Dependency Data Flows to Enable Dynamic Scalability on Parallel

Patterns. 2011 IEEE International Parallel & Distributed Processing Symposium, DOI 10.1109/IPDPS.2011.242.

19. Anne Benoit, Umit V. C Atalyurek, Yves Robert And Erik Saule,. A Survey of Pipelined Workflow Scheduling: Models and

Algorithms. ACM Computing Surveys, Vol. 45, No. 4, Article 50, August 2013 , DOI: http://dx.doi.org/10.1145/2501654.2501664.

20. Paolo Baldan , Silvia Crafa, “A Logic for True Concurrency”, Journal of the ACM (JACM), Volume 61 Issue 4, July 2014, ACM

New York, NY, USA, doi>10.1145/2629638.

21. Christoph Niethammer, Colin W. Glass and Jos´e Gracia. Avoiding Serialization Effects in Data/Dependency aware Task Parallel

Algorithms for Spatial Decomposition. 10th IEEE International Symposium on Parallel and Distributed Processing with Applications,

2012 IEEE,DOI 10.1109/ISPA.2012.109

22. Lisa Cox, Dr. Harry S. Delugach, Dependency Analysis Using Conceptual Graphs. http://citeseerx.ist.psu.edu, doi=10.1.1.8.1136

23. Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk And Andrea De Lucia. Improving Software Modularization

via Automated Analysis of Latent Topics and Dependencies,. ACM Transactions on Software Engineering and Methodology, Vol. 23,

No. 1, Article 4, February 2014, DOI: http://dx.doi.org/10.1145/2559935.

24. Arun Sharma, P. S. Grover and Rajesh Kumar. Dependency Analysis for Component-Based Software Systems. SIGSOFT Software

Engineering Notes, July 2009 Volume 34 Number 4, DOI: 10.1145/1543405.1543424.

