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Abstract: Nowadays, remote sensing technology is being used as an essential
tool for monitoring and detecting oil spills to take precautions and to prevent the
damages to the marine environment. As an important branch of remote sensing,
satellite based synthetic aperture radar imagery (SAR) is the most effective way to
accomplish these tasks. Since a marine surface with oil spill seems as a dark object
because of much lower backscattered energy, the main problem is to recognize and
differentiate the dark objects of oil spills from others to be formed by oceanographic
and atmospheric conditions. In this study, Radarsat-1 images covering Lebanese
coasts were employed for oil spill detection. For this purpose, a powerful classifier,
Artificial Neural Network Multilayer Perceptron (ANN MLP) was used. As the
original contribution of the paper, the network was trained by a novel heuristic
optimization algorithm known as Artificial Bee Colony (ABC) method besides the
conventional Backpropagation (BP) and Levenberg-Marquardt (LM) learning al-
gorithms. A comparison and evaluation of different network training algorithms
regarding reliability of detection and robustness show that for this problem best
result is achieved with the Artificial Bee Colony algorithm (ABC).
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1. Introduction
Petroleum is a major energy source for modern life. The industrialized countries

usually obtain most of the required petroleum by tanker ships from overseas sources
(Sabins 1997). This crowded marine transportation has increased marine pollution
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because of oil spill discharges. It has been estimated that the annual amount of
spilled oil worldwide is more than 4.5 million tons (Bava et al. 2002). An oil
spill, accidental petroleum release into the environment, is usually localized if it
originates from land-based sources and thus its impact can be eliminated relatively
easily. In contrast, marine oil spills, mainly associated with oil transportation by
tankers and pipelines, may result in oil pollution over large areas and present se-
rious biological and economic impacts. Oil spill discharges generally occur during
tanker and cargo ship operations, where ballast waters, tank washing residues,
fuel oil sludge and machinery space bilge deliberately are discharged into the sea
(Harahsheh et al. 2004). Even small discharges can affect marine wildlife. Mostly
birds and mammals are affected by sticky crude oil and bunker fuels that float
on the sea surface. The transformation of these oil types by microorganisms and
sea hydrodynamics takes a long time. Although refined petroleum products are
not sticky and floating so long as crude oil and bunker fuels, they are more poi-
sonous for marine environment (AMSA — Australian Maritime Safety Authority).
Since it is becoming increasingly important to detect and monitor oil spills at sea
for marine ecosystem, today remote sensing technology becomes the most efficient
technology (Sabins 1997). Synthetic Aperture Radar (SAR) remote sensing is su-
perior to optical sensors due to the all weather and all day operation capabilities
(Solberg and Theophilopoulos 1997). The backscatter energy level for oil-spilled
areas is too low since oil dampens the capillary waves of the sea surface, which
causes dark areas. However, Synthetic Aperture Radar (SAR) images must be
processed carefully since the dark areas might occur because of some natural phe-
nomena without oil like smooth water (low wind areas), organic films, wind front
areas, areas sheltered by land, rain cells, grease ice, internal waves and shallow
bathymetric features (Sabins 1997, Alpers et al. 1991, Hovland et al. 1994). The
procedure steps of oil spill detection in Synthetic Aperture Radar (SAR) data can
be generalized as segmentation (dark object extraction), feature extraction and
classification (determination oil) stages (Pavlakis et al. 2001, Brekke and Solberg
2005a, Brekke and Solberg 2005b, Solberg et al. 2007, Shi et al. 2008, Topouzelis
et al. 2009). A detailed survey for these steps and imaging systems can be found
in Topouzelis (2008).

In this study, the dark image areas, which were either oil spills or look-alikes,
were segmented (Xiaoying 2009). The features like shape, contrast and textural
characteristics were extracted from the segmented parts (Topouzelis et al. 2009).
By using the features, statistical, artificial intelligence, rule-based or boosting al-
gorithms were used for identification of the dark areas in a manner of binary
classification, i.e. oil or look-alike (Fiscella et al. 2000, Del Frate et al. 2000,
Solberg et al. 1999, Keramitsoglou et al. 2005, Topouzelis et al. 2009). In this
study, a well-known Multilayer Perceptron (MLP) structure of Artificial Neural
Networks (ANN) was used. Since Multilayer Perceptron (MLP) is a very powerful
and flexible classifier, many different remote sensing studies were reported in litera-
ture (Paola and Schowengerdt 1995, Sunar and Ozkan 2001, Kavzoglu and Mather
2003, Foody 2001) and a detailed review of remote sensing applications by Artificial
Neural Network (ANN) is given in Mas and Flores (2008). The Backpropagation
(BP) algorithm (Rumelhart et al. 1986) is the most well known training method
to optimize weight and bias parameters of Multilayer Perceptron Artificial Neural
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Network (MLP ANN). While the Backpropagation (BP) algorithm converges in
the first order derivatives, the Levenberg-Marquardt (LM) algorithm (Hagan and
Menhaj 1994) converges using the second order of derivatives. Therefore, in most
of the training applications Levenberg-Marquardt (LM) is faster than the Back-
propagation (BP) (Topouzelis et al. 2009) and outperforms the Backpropagation
(BP) algorithm (Kermani et al. 2005).

This study proposes a Multilayer Perceptron Artificial Neural Network (MLP
ANN) training model using Artificial Bee Colony (ABC) algorithm which is de-
scribed by Karaboga (2005). The algorithm, based on the foraging behavior of
honeybees, was first tested on the numerical optimization problems (Karaboga
and Basturk 2007a). The Artificial Bee Colony (ABC) algorithm was used to
train feed-forward neural networks on classification of machine learning commu-
nity benchmark test problems (Karaboga and Ozturk 2009) and inertial sensor
based terrain classification (Kurban and Bedok 2009) where algorithm showed su-
perior performance against other well-known gradient-based and population-based
optimization techniques. As the original contribution of the paper, it is aimed to
train Multilayer Perceptron Artificial Neural Network (MLP ANN) by Artificial
Bee Colony (ABC) algorithm for oil spill classification purpose while comparing
the performance of this new generation algorithm by the Backpropagation (BP)
and the Levenberg-Marquardt (LM) conventional techniques.

2. Artificial Bee Colony Algorithm (ABC)

Artificial Bee Colony (ABC) algorithm is a new meta-heuristic population based
swarm intelligence algorithm developed by Karaboga (2005). The ABC algorithm
mimics the intelligent foraging behavior of honeybee swarms. The first researches
about ABC algorithm focused on examining the effectiveness of ABC for con-
strained and unconstrained problems against other well-known modern heuristic
algorithms such as Genetic Algorithm (GA), Differential Evolution (DE), and Par-
ticle Swarm Optimization (PSO) (Karaboga and Basturk 2007b, Karaboga and
Akay 2009). Later on, ABC has been used for ANN classifier training and cluster-
ing problem (Karaboga and Ozturk 2009, Karaboga and Ozturk 2011) where some
benchmark classification problems were tested, and the results were compared with
those of other widely-used techniques.

The ABC algorithm consists in a set of possible solutions x; (the population)
represented by the positions of food sources where the nectar amount of a food
source corresponds to the quality (fitness) of the associated solution. The basic
idea of the ABC algorithm is to assign artificial bees to investigate the search
space searching the feasible solutions. The artificial bees collaborate and exchange
information so that bees concentrate on more promising solutions in terms of certain
evaluation criteria. A set of artificial bees is used to collaboratively search for the
optimal solution. The ABC algorithm basically uses three types of bees in the
colony: (i) employed bees, (ii) onlooker bees and (iii) scout bees. While employed
bees are chosen from half of the colony at the beginning, the other half is assigned
as onlookers. Employed bees go to the food sources, and then inform onlooker bees
about the nectar and the positional information of the food sources, meanwhile
onlooker bees wait on the dance area to determine to choose a food source. An
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employed bee is transformed into a scout bee if its food source is abandoned. As
a simulation element, the scout bees carry out random search in the simulation
model space.

In the ABC algorithm, the number of employed bees equals the number of food
sources plus the number of onlooker bees. There is only one employed bee for each
food source where the initial positions of employed bees are randomly generated.
At each of following iterations, each of employed bees searches a new food source
neighboring to its current food source by using Equation (1), and then computes
the amount of nectar of the new food source. On the basis of greedy selection, if
the amount of nectar of the new food source is higher than that of its current food
source, then the employed bee continues with that food source, otherwise it keeps
the current one.

vij = Ty + 035 (Tij — Thg), (1)
where v; is a candidate solution, x; is the current solution, xj is a neighbor solution
and € is a random number between [-1,1] that controls the production of neighbor
food sources around z;;.

After this search process is completed for all employed bees, they share the
information about their food sources with the onlooker bees. An onlooker bee an-
alyzes the nectar information and selects a food source in terms of a probability
related to the nectar amount of the sources, computed by Equation (2). These em-
pirical probabilities enable a roulette wheel selection which produces better solution
candidates to have a greater chance of being selected.

Jiti

SN (2)
> fitn
n=1

pi =

where fit; is the fitness value of solution i, which is proportional to the nectar
amount of the food source at position i, and SN is the number of food sources,
which is equal to the number of employed bees.

The food source to be assigned to an onlooker bee is controlled by a random
number which is between 0 and 1 on the basis of a comparison of the random
number and the probability value. Once all onlookers have been assigned to food
sources, each of them searches within a new neighboring food source by Equation
(1) of its assigned food source and computes its nectar amount. If the amount of
nectar of the new source is higher than that of the assigned one, then the onlooker
bee memorizes the new position and forgets the old one.

If a food source cannot be improved enough through a predetermined number
of cycles by the related employed and onlooker bees, it is assigned as an abandoned
source and then the employed bee becomes a scout bee when the cycle number ex-
ceeds the critical number of cycles, called limit parameter. The scout bee generates
a new random solution by Equation (3). Assume that z; is the abandoned source
and j € {1,2,...,D}, where D is the dimensionality of the solution vector, the scout
discovers a new food source which will be replaced with x;:

‘rz = wzni7L+Tand(O’ 1)(‘¢¥naz - xinzn)v (3)

where j is determined randomly, to be different from 4.
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The steps of the ABC algorithm are as follows (Karaboga and Ozturk 2009):

e Generate initial population x;, i=1...SN
e Evaluate the population
e Set cycle to 1
e REPEAT
FOR each employed bee
Produce new solutions v; by using Equation (1)
Calculate fitness
Apply the greedy selection process
FOR each onlooker bee
Choose a solution z; depending on p; calculated by Equation (2)
Produce new solutions v; by using Equation (1)
Calculate fitness
Apply the greedy selection process
o If there is an abandoned solution for the scout, then
Replace it with a new solution produced by Equation (3)
e Memorize the best solution achieved so far
e Assign cycle to cycle + 1
e UNTIL maximum cycle number is reached

There are three control parameters in the ABC algorithm: (i) the number of
food sources which is equal to the number of employed and also onlooker bees
(SN), (ii) the limit parameter, and (iii) the maximum cycle number.

3. Study Area and Feature Extraction

Radarsat-1 images covering the oil pollution occurred on the Lebanese coast in July
2007 were used as a dataset. Radarsat-1 images were acquired by ITU-CSCRS
(Istanbul Technical University — Centre for Satellite Communication and Remote
Sensing) during the event. Depending on the wind and current condition, the oil
pollution spread 100 miles along the coast and affected also Syria’s shoreline. In
the East Mediterranean region, Lebanon, neighboring Syria and Israel, has 225 km
coastline (Fig. 1). This oil pollution occurred due to the bombing of a power plant
at Jiyeh, 12 miles south of Beirut, and affected approximately 1/3 of the whole
Lebanese coastline, nearly 70-80 km north of the power plant which is illustrated
with blue points on Fig. 1. Depending on the weather conditions, it could have been
also a serious threat to the neighboring Mediterranean countries such as Turkey,
Cyprus and Syria.

Features can be branched into three categories (Solberg and Theophilopoulos
1997, Del Frate et al. 2000, Karathanassi et al. 2006, Brekke and Solberg 2005a)
as given below:

e The geometric characteristics of oil spills such as area, perimeter, complexity.

e The physical behavior of oil spills such as mean, standard deviation or max
backscatter value.
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e The oil spill context in the image such as number of other dark formations,
presence of ships and proximity to and route of ships.

In addition to these features, textural information may be seen as another
category, etc. Haralick features (Haralick 1979). Texture can be defined as a
variation of the pixel intensities in a specific image area and some features based
on texture measures may increase the classification performance (Térma et al.
2004). Haralick features describing the texture features can be computed using
Haralick’s co-occurrence matrix based on image intensities (Haralick et al. 1973).
A co-occurrence matrix is a two dimensional histogram of intensity values for a pair
of image pixels which are separated by a fixed spatial relationship. The texture
measures based on co-occurrence matrix can be Angular Second Moment, Contrast,
Correlation, Dissimilarity, Entropy, Homogeneity, Mean and Standard Deviation
(Assilzadeh and Mansor 2001).

The features based on the above characteristics represent objects instead of
pixels. Especially geometric, physical and contextual characteristics are computed,
based on the objects (dark formations). Therefore, before the features are com-
puted, the dark objects must be extracted. It is obvious that an object-oriented
approach is more convenient for SAR imagery classification because of both the co-
herent nature imagery of SAR and the closeness of the dark area intensity values.
The detailed explanations of the sub-features of these general categories can be
found in Topouzelis et al. (2009), which examines different combinations of a total
of 25 sub-features on a basis of maximizing the oil spill detection performance by

NICOSIA”

; ”é\famagusta

Origin of Oil Spill
(Jiyeh Power Station)

Fig. 1 Study area: Big point represents the origin of oil spill and small points
represent the dispersion of oil spill.
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using a Genetic Search Algorithm (GA). They reported that 10 of the features as
the optimal group of features represented the full classification accuracy according
to their proposed method. Although many combinations of features can be selected,
the following features are preferred to be used as the feature set according to the
characteristics and our analysis. In fact, finding an optimal set of features is not
the main motivation of the paper. Moreover, the feature set might be preferred not
to obtain full accuracy in order to be able to test various optimization algorithms.
Consequently, the selected features are SP2, BSd, ConLa, Opm, Opm/Bpm, OSd,
P/A, C and THm (Topouzelis et al. 2009):

e SP2 means Shape factor II (SP2), which describes the general shape of the
object. It is also called as ‘first invariant planar moment’, ‘form factor’, and
‘asymmetry’.

e BSd means Background standard deviation, which is the standard deviation
of the intensity values of the pixels belonging to the region of interest, selected
by the user surrounding the object.

e ConLa means Local area contrast ratio, which is the ratio between the mean
backscatter value of the object and the mean backscatter value of a window
centered at the region.

e Opm means object power to mean ratio, which is the ratio between standard
deviation of the object and the mean of the object.

e Opm/Bpm means of the power to mean ratio, which is the ratio between the
object power to mean ratio and the background power to mean ratio.

e OSd means object standard deviation, which is the standard deviation of the
object.

e P/A means perimeter to area ratio, which is the ratio between the perimeter
(P) and the area (A) of the object.

e C means object complexity, which describes how simple (or complex) the
geometrical objects are.

e THm means mean Haralick texture, which is the mean Haralick texture based
on the average of the grey level co-occurrence matrices of the sub-objects.

The features can be categorized as: SP2, P/A, and C are geometrical charac-
teristics; BSd, ConLa, Opm, Opm/Bpm, and OSd refer to physical characteristics,
and THm is textural characteristic of dark formations (Topouzelis et al. 2009).

In order to extract the above features on the basis of low computational burden,
the dark areas are firstly windowed in proper extents. Fig. 2 shows windowed dark
areas of determined oil spill and look-alike.

The objects are the dark formations in the windows where a total of 68 oil and
53 look-alike objects detected by CSCRS is windowed. The objects were segmented
on the basis of binary image. Binary image enables to extract the pixel coordinates
of object elements. Using binary images as a mask, the preferred 9 features are
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Fig. 2 Oil (left) and look-alike (right) windows.

computed from the objects and the backgrounds for each window. The statistics
of oil and look-alike data are given in Tab. I.

The features are randomly divided into train and test data for both oil and
look-alike objects: 35 train and 30 test objects for oil data and 30 train and 23 test
objects for look-alike data, etc. all in all 65 objects as a train set and 56 objects
as a test set.

Foat 0il Look-Alike
ceatures Min. Max. | Mean Std. Min. Max. | Mean Std.
SP2 0.053 1 0.547 0.202 0.269 1 0.666 0.173

BSd 13.635 | 68.04 | 40.453 | 14.677 | 23.475 | 68.066 | 41.780 | 9.551
ConLa 0.373 0.85 0.547 0.088 0.440 0.663 0.570 0.062
Opm 0.177 | 0.457 0.257 0.066 0.169 0.297 0.207 0.025
Opm/Bpm| 0.454 5.424 1.071 0.685 0.433 1.410 0.808 0.181

OSd 7.009 | 53.165 | 20.275 | 9.309 8.972 | 29.838 | 16.791 | 4.349
P/A 0.095 0.881 0.486 0.221 0.173 0.673 0.448 0.110
C 2.020 | 51.252 | 13.250 | 9.873 9.213 | 74.762 | 23.898 | 11.588

THm 11.400 | 36.202 | 22.346 | 5.890 | 12.400 | 35.577 | 21.437 | 5.312

Tab. I Statistics of oil and look-alike data.

4. Network Model

The design of a topologic structure (number of hidden layers and number of neu-
rons within the layers) of a Multilayer Perceptron Artificial Neural Network (MLP
ANN) is important (Dayhof 1990, Haykin 1999). Generally, one hidden layer is ca-
pable of learning (generalizing) the relations between input and output well enough
(Lawrence 1993, Bishop 1995). The number of neurons in a hidden layer is so flexi-
ble that any number of neurons (not less than the output dimension) may be easily
employed with enough training iterations depending on the input-output data. If
the topology is not enough, poor results are obtained because of lack of general-
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ization. On the contrary, if the topology is overdetermined, then generalization
transforms into memorizing; this is also known as overfitting. So, these topologic
parameters are usually determined by trial and error (Kavzoglu and Mather 2003).
After many tests, our topology was selected as 9-6-2, one hidden layer with 6 neu-
rons. Input and output layers were fixed by the dimension of input and output
patterns. Two classes (oil and look-alike) were represented by 2 neurons in the
output layer and nine different features were represented by 9 neurons in the input
layer. The logarithmic sigmoid transfer function was employed at hidden and out-
put layer neurons. The topology covered 74 total unknown parameters of weights
and biases to be optimized (9*6+6+6%2+2).

All the parameters of BP, LM and ABC were determined by trial and error
from many tests. The learning rate parameter for BP was 0.4. For LM applications
the blending factor was 0.01 and its increase and decrease values were set to 10
and 0.1, respectively. Colony size, maximum cycle number and limit value of the
ABC algorithm were set 20, 1000 and 500, respectively. The working interval of
parameters (ANN weights and biases) was chosen as [-10 10]. The input data were
normalized (i.e. [-1, 1] closed interval) to increase the classification performance
and to decrease the convergence time before the data given to the network.

5. Methodology

Since the optimal values of the weight and bias parameters which store information
are unknown, the training phase (updating of weights and biases) is naturally an
iterative process. The parameters are randomly initialized at the first iteration.
Then, each run of training phases with a sufficient number of iterations provides a
different solution space. The general strategy in training phase is using validation
data to prevent overfitting and then testing the optimized parameters (Kavzoglu
and Mather 2003, Weigend 1994). Furthermore, assuming to have a reasonable
number of iterations on the basis of generalization, it is believed that not only
generalization but also robustness is important. From the viewpoint of the study,
robustness can be defined as the performance precision of multiple runs, having
a small dispersion of performances. When the performance or error values are
clustered in a narrow interval, it means that the algorithm is resistant to differ-
ent initial conditions and the algorithm is stable. Since the artificial intelligence
techniques are mostly heuristic algorithms, i.e. a solution can always be found but
there is not a guarantee to be optimal, robustness is one of the main criteria to be
checked especially in the comparison of such type algorithms. Therefore, BP, LM,
and ABC algorithms are compared to each other in terms of descriptive statistics
obtained from 30 independent runs. Afterwards, these groups of 30 elements are
statistically tested on the basis of the inferential statistical approaches. In sta-
tistical inference, 30 is assumed as a threshold for reasonable statistical analysis
(Johnson and Bhattacharyya 2000).

The value of 1000 was determined as an iteration number for all runs of BP,
LM, and ABC algorithms. In spite of the fact that the number of iterations of
ABC runs might have been assigned a higher value because of its heuristic nature,
ABC had a moderate convergence speed so that higher iterations were not needed
in the problem.
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In the experiments, the test data were simulated by the network models after
the training phase to obtain the classification results which were used to compute
the overall, procedure and user accuracies (Congalton and Green 1999) and the
mean, minimum, maximum, standard deviation, skewness and kurtosis statistics.
Skewness is a form measure of shape of distribution. A nonzero skewness means
the stack of the values lies to the left or right of the mean, etc. asymmetric tail
formation. A zero value means nearly even distributed on both sides of the mean.
Kurtosis illustrates the flatness of the distribution with respect to Normal Curve,
so it is informative about the tail behavior of distribution. Nonzero values mean
more of the variance is the result of infrequent or frequent extreme deviations.

The frequency distributions of overall accuracies were illustrated graphically in
terms of bar graphics (kind of histogram) with fitting Normal distribution. Let us
analyze visually the shapes of the graphics and the fitted Normal curves to find
whether the variation is within a reasonable range or not, etc. the bigger standard
deviation (a flattened Normal curve), the less robustness (precision). Finally, the
mean overall accuracy performances obtained from 1000 iterations were plotted for
each of BP, LM and ABC algorithms to examine the convergence speed.

6. Results

The results obtained from the simulations were used to compute overall, procedure
and user accuracies of oil and look-alike test data. The classification accuracies are
basically given in two types: the accuracies obtained from the 1000 iterations for
each run after 1000 training iterations and accuracies obtained from the optimal
iterations for each run. The optimal iteration of a run is determined according
to the highest overall accuracy in that run. The optimal number of iterations is
computed since a better accuracy can be obtained by the parameter values which
are determined in the earlier iterations of the training process than the accuracy
of the last iteration. In order to be able to evaluate the performances, the weight
and bias parameters of each of iteration were saved. For example, in LM training,
a total of 1000 iterations give a 74x1000 parameter matrix. After running LM
30 times independently, the matrix becomes a 74x1000x30 matrix. By loading
the stored parameters into the network model, accuracies for oil and look-alike
were computed for each iteration at each run. Consequently, five (one overall,
two procedure and two user accuracies) 1000x30 sized performance matrices were
produced. Then, the optimal iteration numbers which reflect the highest overall
accuracies in each of the 30 runs were determined. According to the optimal
iterations, the classification performances were extracted from the performance
matrices. The results are given in Tabs. II-IV. In these tables, OA, PA and UA
abbreviations stand for overall accuracy, procedure accuracy and user accuracy,
respectively. The descriptive statistics of 1000 and optimal iterations are given in
Tabs. V=VI. At a glance, the results clearly point out the vantage of ABC over BP
and LM.

The two-sided tests for skewness and kurtosis illustrate the normality of overall
accuracies of algorithms from 30 runs, i.e. groups. The null hypothesis (Hy) claims
that the skewness and kurtosis values are zero. The alternative hypothesis (Hj)
generally claims that skewness and kurtosis are not equal to zero. For significance
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of ) PA UA ) PA TA
M_E Iteration | OA '—Ga—T Afke | O | Alike | Lteration | OA '—Ga—ay O [ Alike
1 1000 7857 | 78.79 | 78.26 | 83.87 | 72.00 5 82.14 | 84.85 | 78.26 | 84.85 | 78.26
2 1000 58.03 | 57.58 | 60.87 | 67.86 | 50.00 D) 83.03 | 87.88 | 78.26 | 85.20 | 81.82
3 1000 7857 | 84.85 | 6957 | 80.00 | 76.19 5 83.03 | 87.88 | 78.26 | 85.20 | .82
a 1000 75.00 | 60.70 | 82.61 | 85.19 | 65.52 10 83.03 | 87.88 | 78.26 | 85.20 | 81.82
5 1000 | 82.14 | 84.85 | 78.26 | 84.85 | 78.26 19 8571 | 87.88 | 82.61 | 87.88 | 82.61
6 1000 | 80.36 | 78.79 | 82.61 | 86.67 | 73.08 9 82.14 | 84.85 | 78.26 | 84.85 | 78.26
7 1000 | 80.36 | 78.79 | 82.61 | 86.67 | 73.08 31 82.14 | 81.82 | 82.61 | 87.10 | 76.00
8 1000 75.00 | 69.70 | 82.61 | 85.19 | 65.52 8 80.36 | 84.85 | 73.01 | 82.35 | 77.27
9 1000 75.00 | 72.73 | 78.26 | 82.76 | 66.67 6 82.14 | 84.85 | 78.26 | 84.85 | 78.26
10 1000 | 83.03 | 81.82 | 86.96 | 90.00 | 76.92 9 85.71 | 84.85 | 86.96 | 90.32 | 80.00
1 1000 76.79 | 75.76 | 78.26 | 83.33 | 69.23 1 83.03 | 81.82 | 86.96 | 90.00 | 76.92
12 1000 71.43 | 72.73 | 6957 | 77.42 | 64.00 5 83.03 | 87.88 | 78.26 | 85.20 | 81.82
13 1000 | 67.86 | 63.64 | 73.01 | 77.78 | 58.62 6 85.71 | 90.01 | 78.26 | 85.71 | 85.71
4 1000 75.00 | 72.73 | 78.26 | 82.76 | 66.67 1 8036 | 96.07 | 56,52 | 76.10 | 92.86
5 1000 7321 | 72.73 | 7391 | 80.00 | 65.38 6 83.03 | 81.82 | 86.96 | 90.00 | 76.92
16 1000 | 67.86 | 63.64 | 73.01 | 77.78 | 58.62 6 83.03 | 84.85 | 82.61 | 87.50 | 79.17
7 1000 76.79 | 75.76 | 78.26 | 83.33 | 69.23 3 83.03 | 9697 | 6522 | 80.00 | 93.75
18 1000 76.79 | 75.76 | 78.26 | 83.33 | 69.23 8 83.03 | 87.8% | 78.26 | 85.20 | 31.82
9 1000 | 80.36 | 75.76 | 86.96 | 89.20 | 71.43 33 85.71 | 87.88 | 82.61 | 87.88 | 82.61
20 1000 7857 | 78.79 | 78.26 | 83.87 | 72.00 5 85.71 | 87.88 | 82.61 | 87.88 | 82.61
21 1000 75.00 | 72.73 | 78.26 | 82.76 | 66.67 35 7857 | 78.79 | 78.26 | 83.87 | 72.00
22 1000 | 80.36 | 81.82 | 78.26 | 84.38 | 75.00 2 85.71 | 87.88 | 82.61 | 87.88 | 82.61
23 1000 75.00 | 60.70 | 82.61 | 85.19 | 65.52 8 8571 | 96.07 | 6957 | 82.05 | 94.12
24 1000 | 83.03 | 81.82 | 86.96 | 90.00 | 76.92 11 83.03 | 81.82 | 86.96 | 90.00 | 76.92
25 1000 | 80.36 | 84.85 | 73.01 | 82.35 | 77.27 5 8750 | 96.07 | 7301 | 8421 | 94.44
26 1000 7321 | 60.70 | 78.26 | 82.14 | 64.29 6 89.20 | 90.01 | 86.96 | 90.91 | 26.96
27 1000 | 82.14 | 84.85 | 78.26 | 84.85 | 78.26 2 8303 | 100 | 60.87 | 7857 | 100
28 1000 | 80.36 | 81.82 | 78.26 | 8438 | 75.00 5 82.14 | 9091 | 6957 | 81.08 | 84.21
29 1000 | 80.36 | 81.82 | 78.26 | 84.38 | 75.00 15 §2.14 | 84.85 | 78.26 | 84.85 | 78.26
30 1000 75.00 | 72.73 | 78.26 | 82.76 | 66.67 7 7857 | 81.82 | 73.01 | 81.82 | 73.01

Tab. IIT Classification accuracies of LM from 1000 (left) and optimal iterations (right) (%). (OA: Overall Accuracy, PA: Procedure
Accuracy, UA: User Accuracy).
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Minimum | Maximum | Mean | Std. | Skewness | Kurtosis
BP 55.36 83.93 75.24 7.56 | -1.2516 0.5878
LM 58.93 83.93 76.61 5.29 | -1.3237 2.4329
ABC | 76.79 89.29 83.63 2.97 | -0.0043 -0.3326

Tab. V Descriptive statistics of the overall accuracies from 1000 iterations (%).

Minimum | Maximum | Mean | Std. | Skewness | Kurtosis
BP 58.93 87.50 76.73 7.76 | -1.0537 -0.0121
LM 78.57 89.29 83.69 2.38 | -0.1972 0.3041
ABC | 82.14 91.07 87.14 | 2.54 | -0.1516 -0.7134

Tab. VI Descriptive statistics of the overall accuracies from optimal iterations

(%).

level of 0.05 («) and sample size of 30, the non-rejection regions of Hy for skew-
ness and kurtosis are [-0.847 0.847] and [-1.08 2.12], respectively (MVP program
2010). According to both skewness and kurtosis tests through Tabs. V-VI, ABC
distribution is the nearest one to a Normal Distribution, which supports that the
performance of ABC algorithm is the most stable and robust.

In order to show that three algorithms are statistically different from each
other, their paired groups (not paired samples) were statistically tested by two-
sided Student’s t-test with significance level (a) of 5%. Since true standard error
(standard deviation of sampling distribution) is unknown, using a Student’s t-test
is more appropriate than a z-test. In the Student’s t-test, the null hypothesis (Hy)
claims that the means of the groups are equal to each other and the alternative
hypothesis (H;) claims that they are not equal, which are given in Equation (4):

Ho: 1 = po versus Hy: py # po with rejection region R: |T| > tas2 or P <
(4)

The main assumptions for the Student’s t-test are that the groups are inde-
pendent and normally distributed. Since the size of the groups is 30, the normal
distribution assumption is accepted as valid, based on the central limit theorem.
Even if this assumption is violated, the tests about a population mean are relatively
robust. The detailed explanations can be found in Johnson and Bhattacharyya
(2001). According to the equal and unequal variances, the test statistics and P
values are given in Tabs. VII-VIIL.

The results pointed out that the ABC group was completely different from the
other ones while the LM and BP groups were statistically even, which supports the
superior performance of ABC against the others.

The distribution graphics (Figs. 3-5) clearly show the robustness of ABC over
BP and LM. In other words, the scale of the curve of ABC is narrower than and the
location of the curve of ABC is bigger than the ones for LM and BP. Presenting
a higher density of the normal curve means the higher probability of producing
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Degrees | Critical
Test Pairs | T statistics | of Value P Value Decision
Freedom| |t /2]
ABC - BP | 5.66 58 2.00 4.88x10~7 | Rejection of Hy
ABC - LM | 6.34 58 2.00 3.72x10~% | Rejection of Hy
BP- LM 0.81 58 2.00 0.42 Non-Rejection
of HO

Tab. VII Student’s t-test parameters with equal variance assumption (a=0.05).

Degrees | Critic
Test Pairs | T statistics | of value P Value Decision
Freedom | |tq /2]
ABC - BP | -5.66 37.74 2.00 1.69x10~% | Rejection of Hy
ABC - LM | -6.34 45.60 2.00 9.25x10~% Rejection of Hy
BP- LM 0.81 51.93 2.00 0.42 Non-Rejection
of HO

Tab. VIII Student’s t-test parameters with unequal variance assumption (a=0.05).

results in that interval. However, the curves of optimal iterations of LM and ABC
are close (2.38, 2.54), the location of the curve of ABC is bigger than of LM (83.69,
87.14). In fact, it is reasonable to take into account the results from 1000 iterations
to decide which algorithm is better rather than optimal performances. Though,
the distribution bars and fitted curves of performances from the last and optimal
iterations point out that ABC is the best as illustrated by the numerical results.
The results of LM and BP were statistically equivalent. However, it can be claimed
that LM is better than BP from observing the bars and the curves.

The general convergence characteristics of algorithms can be seen from Fig. 6,
which illustrates the mean performances of the algorithms from 30 runs. From
Fig. 6, it is evident that LM accelerates the fastest within 100 iterations, it then
gets stuck at a local minimum. The convergence speed of the ABC algorithm is
fast within the first 300 and then it slows down but evolves with a low convergence
rate to the global minimum (optimum solution). The BP algorithm is the slowest
one in terms of the convergence rate and seems to evolve beyond 1000 iterations.
However, tests for more than 1000 iterations (up to 20000 iterations) were studied
and did not produce any further gain.

7. Conclusions
Oil spill is an important threat to marine environment, for which early warning sys-
tems have been developed. The basic problem is to decide which dark formations

are oil and which ones are not. After appropriate features are obtained, classifica-
tion becomes the vital phase. ANN classifiers are the most popular and superior
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Fig. 3 The accuracy distributions of BP from (a) 1000 iteration and (b) the optimal
number of iterations.
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Fig. 4 The accuracy distributions of LM from (a) 1000 iteration and (b) the optimal
number of iterations.
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Fig. 5 The accuracy distributions of ABC from (a) 1000 iteration and (b) the
optimal number of iterations.
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Fig. 6 Mean accuracies of ABC, LM, and BP algorithms from 30 runs.

models to discriminate oil spills candidates. The performance of the ANN models
is highly depended on the training algorithm. Among the conventional methods,
LM is the most preferred algorithm because of convergence speed and performance,
on the other hand, derivative based algorithms present the danger of tackling local
minima. In this study, a new generic heuristic optimization algorithm, Artificial
Bee Colony (ABC), was tested on training MLP ANN for oil spill classification
against BP and LM algorithms.

Radarsat-1 SAR images of the Lebanese power plant case were used in the
experiments, which include a total of 121 dark objects (68 oil and 53 look-alike
objects). The 9 features of the geometric, physical and textural characteristics
were extracted as input. The performance analysis was based on the 30 different
runs of algorithms. According to the results, the ABC algorithm statistically gave
different results than the BP and LM algorithms, and ABC has performed not only
the best mean overall accuracy from 30 runs, but also the most robust algorithm
against BP and LM. Even though BP seemed having comparable results with LM,
procedure and user accuracies imprinted that LM was better than BP.

Based on the good performance of the ABC algorithm, the general conclusion
is that ABC can certainly be used to train an MLP ANN on oil spill classification
instead of BP or LM with a high confidence.

As a future work, it is planned to work with multiclass classification problems
(more than two classes) of the multispectral optical remote-sensing data for land
cover-land use. Besides, the ABC algorithm will be studied for unsupervised clas-
sification against conventional clustering techniques.
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