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Abstract: The drag coefficient plays a vital role in the

modeling of gas-solid flows. Its knowledge is essential

for understanding the momentum exchange between the

gas and solid phases of a fluidization system, and cor-

rectly predicting the related hydrodynamics. There exists

a number of models for predicting the magnitude of the

drag coefficient. However, their major limitation is that

they predict widely differing drag coefficient values over

same parameter ranges. The parameter ranges over which

models possess a good drag prediction accuracy are also

not specified explicitly. Accordingly, the present investi-

gation employs Geldart’s group B particles fluidization

data from various studies covering wide ranges of Re

and εs to propose a new unified drag coefficient model.

A novel artificial intelligence based formalism namely

genetic programming (GP) has been used to obtain this

model. It is developed using the pressure drop approach,

and its performance has been assessed rigorously for

predicting the bed height, pressure drop, and solid

volume fraction at different magnitudes of Reynolds

number, by simulating a 3D bubbling fluidized bed. The

new drag model has been found to possess better predic-

tion accuracy and applicability over a much wider range

of Re and εs than a number of existing models. Owing to

the superior performance of the new drag model, it has a

potential to gainfully replace the existing drag models in

predicting the hydrodynamic behavior of fluidized beds.

Keywords: Fluidization, drag force, modeling, genetic

programming, computational fluid dynamics

1 Introduction

The fluidized beds are versatile contactors employed in a

wide range of chemical industries producing, for example,

petroleum, food, and pharmaceuticals products. They are

preferred in processes such as catalytic cracking of petro-

leum, and combustion and gasification of coals and bio-

masses. The preference for fluidized beds (FB) stems from

their excellent heat and mass transfer, and solids mixing

characteristics. These features are in turn related to the

existence of bubbles and their behavior in the bed. In a

fluidized bed, bubbles are responsible for mixing between

various phases, circulation of fluid, and stabilization of

temperature. Hence, understanding their transient beha-

vior, and characteristics becomes essential. Especially, the

knowledge of time averages of gas and solids velocities,

void fraction, pressure, reaction kinetics, and catalytic

influence is crucial for the design, operation, and optimi-

zation of a fluidized bed reactor. For many decades, the

design of FB reactors was primarily dependent on the data

from laboratory, bench-scale, and pilot plant scale experi-

ments. Since these experiments are time and cost intensive

to perform, design and operation of an FB reactor is also

conducted by developing mathematical models based

on the fundamental laws of mass, momentum, energy,

and reaction conversion kinetics. An exhaustive literature

on the modeling of fluidized beds and related concepts

such as minimum fluidization velocity, bubble diameter,

bubble velocity, bubble coalescence, splitting and slug-

ging in the bed, particle velocity, flow pattern, and pres-

sure distribution in and around the bubbles, is available in

various books (Davidson and Harrison 1963, 1971; Kunni

and Levenspiel 1991; Gibilaro 2001; Jackson 2000).

The Navier-Stokes equations have been widely used

in modeling and designing of fluidized beds. With an

exponential increase in the processing speeds of compu-

ters in the last few decades, the computational fluid

dynamics (CFD) approach has gained a widespread
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acceptance for the solution of Navier-Stokes fluidization

models. There are two approaches for developing a CFD-

based mathematical model for describing the fluidization

phenomenon. The first one is known as Eulerian-Eulerian

(“two-fluid” model), which considers both gas and solid

phases as a continuum and assumes interpenetration of

the phases via interphase momentum exchange. The sec-

ond approach is termed Eulerian-Lagrangian that solves

each particle’s motion individually, and considers the gas

phase as a continuum.

In the present work, two-fluid model has been used

for modeling gas and solid phases. It has been also used

in most studies on gas-solid suspensions (Anderson and

Jackson 1967; Du et al. 2006; Wang 2008). Here, Navier-

Stokes equation is used for both phases since it considers

each phase as an interpenetrating continuum. Among

various terms of Navier-Stokes equation, the most influ-

ential one that significantly affects the bubble behavior

(size, shape, velocity, coalescence and breakup) is the

interphase momentum exchange term, usually referred as

drag. Several theoretical/empirical models have been pro-

posed based on experiments (Ergun 1952; Gidaspow and

Ettihadieh 1983; Syamlal and O’Brien 1987) or data from

Lattice Boltzmann simulations (Beetstra 2006; Beetstra,

van der Hoef, and Kuipers 2007; Benyahia, Syamlal, and

O’Brien 2006; Hill, Koch, and Ladd 2001; Khandai,

Derksen, and Van den Akker 2003; van der Hoef, van

sint Annaland, and Kuipers 2005) for the determination

of the stated drag. Individually, these models can make

reasonably accurate predictions of the bed expansion,

bubble shape, and other gas-solid hydrodynamics in

some regions of the parameter space. However, outside

these regions – which are not always defined explicitly –

the drag predictions of the existing models can be quite

inaccurate. The predictions of different models also differ

widely over same parameter ranges. Thus, the search for

an improved model with a wider application potential has

become an ongoing activity. Accordingly, in this paper, a

novel artificial intelligence (AI) based exclusively data-

driven modeling formalism, namely “genetic program-

ming (GP),” has been adopted to propose a new drag

model for Geldart type B particles possessing significantly

higher prediction accuracy than the existing ones.

1.1 Existing drag models

The existing drag models for fluidized beds can be cate-

gorized in the following three groups:

(I) Pressure drop based: These models employ pressure

drop across the fluidized bed wherein the

corresponding experimental data are analyzed for

viscous and inertial regimes.

(II) Terminal velocity based: In this approach, terminal

velocity of a single particle is modeled through a

force balance, and it is extended for a multiparticle

system.

(III) Lattice Boltzmann simulation: This serves as an

alternative to solving Navier-Stokes equations. It

uses statistical fluid dynamics for describing the

flow behavior.

Several studies exist wherein performance of a number

of drag models has been compared. Mckeen and Pugsley

(2003) in their study on fluid catalytic cracking involving

bubbling fluidized bed considered four drag models pro-

posed by Gibilaro (2001), Gidaspow and Ettihadieh

(1983), and Syamlal and O’Brien (1988) and found that

the model predictions vary from the experimental

results. Lundberg and Halvorsen (2008) compared drag

models by Gidaspow and Ettihadieh (1983), Hill, Koch,

and Ladd (2001), Syamlal and O’Brien (1988), Du Plessis

(1994), and Richardson and Zaki (1954) and observed

that their predictions of the bubble frequency matched

reasonably well with those observed experimentally.

Behjat, Shahhosseini, and Hashemabadi (2008) demon-

strated that the model by Syamlal and O’Brien (1988)

performed better than the model by Gidaspow and

Ettihadieh (1983) in predicting the bed expansion and

gas-solid hydrodynamics in a fluidized bed, although

both models performed similarly in predicting the bub-

ble shape. Hosseini et al. (2009) observed significant

errors between the magnitudes of the experimental bed

expansion ratios and those predicted by various drag

models. By applying a suitable factor in the Gibilaro’s

model, they could improve the accuracy of predictions

pertaining to the bed hydrodynamics. Using Multiphase

Flow with Interphase eXchanges (MFIX) software, Zinani,

Philippsen, and Indrusiak (2013) studied the flow hydro-

dynamic in a bubbling fluidized bed wherein they inves-

tigated three drag models by Gidaspow and Ettihadieh

(1983), Hill, Koch, and Ladd (2001), and Syamlal and

O’Brien (1988). Here, Zinani and co-authors found that

(a) for the models of Gidaspow and Ettihadieh (1983),

and Hill, Koch, and Ladd (2001), the mesh independency

was hard to achieve, and (b) the model by Syamlal and

O’Brien, (1988) predicted smaller sized bubbles com-

pared to those observed in experiments. This study also

found a similarity between the shape predictions made

by the models of Gidaspow and Ettihadieh (1983) and

Hill, Koch, and Ladd (2001). In their study, Zimmermann

and Taghipour (2005) modified the drag model by
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Syamlal and O’Brien (1988) to get close to the experi-

mental results. According to Li et al. (2008) the modified

method is applicable over a limited range. Benzarti,

Mhiri, and Bournot (2012) compared the drag models by

Gidaspow and Ettihadieh (1983), Syamlal and O’Brien

(1988), and Benzarti, Mhiri, and Bournot (2012) wherein

it was observed that the first two models overestimated

the drag by over-predicting the bed expansion.

Additionally, it was found that the model by Benzarti,

Mhiri, and Bournot (2012) predicts the drag better for 75

micron FCC (fluid catalytic cracking) particles. Yang et al.

(2003) analyzed eleven drag models proposed by namely,

Gibilaro (2001), Gidaspow and Ettihadieh (1983), Hill,

Koch, and Ladd (2001), Syamlal and O’Brien (1988), Du

Plessis (1994), Richardson and Zaki (1954), Esmaili and

Mahinpey (2011), Wen and Yu (1966), Arastoopour,

Pakdel, and Adewumi (1990), and Zhang and Reese

(2003). In this analysis, none of the available drag models

in their original form could make accurate predictions of

the drag. Hence, Yang et al. (2003) modified the original

model by Syamlal and O’Brien (1988) using the experi-

mental minimum fluidization velocity and void fraction

data. They also indicated that their model is superior to

the other drag models. An overview of the drag models

applied to fluidization can be found in De Felice (1994).

From the above discussion it can be seen that at times

there exists a significant variation in the β predictions of

existing models.

The remainder of the paper is organized as follows.

Section 2 first provides an overview of the GP formalism

along with a brief account of the existing drag models.

This section also details the CFD model describing the

continuity and momentum balance equations as also the

closure relations appropriate to the experimental set-up

used in this study. Development of the GP-based drag

model is described in Section 2.1, and the CFD model

equations and their simulation conditions are given in

Sections 2.2 and 2.3, respectively. Section 3 gives details

of the setup used in conducting the fluidization experi-

ments. Section 4 titled “Results and Discussion” provides

results of the following four studies: (i) a comparison of

the experimental fluidization snapshots with the corre-

sponding CFD-simulated contours using the GP-based

new drag model, (ii) a comparison of the drag coefficient

magnitudes predicted by the GP-based model for wide

ranges of Reynolds number and solid volume fraction

values with those predicted by other drag models, (iii) a

comparison of the experimental bed expansion ratio

values with those predicted by the GP-based and other

drag models, and (iv) a comparison of the experimental

measurements of the steady-state pressure drop inside the

fluidized bed – as a function of the gas velocity – with the

corresponding predictions made by the GP-based and

other drag models. Finally, Section 5 summarizes the

principle findings of this study.

2 Methods

2.1 Genetic programming (GP)

Genetic programming (Koza (1990); Enwald, Peirano, and

Almstedt (1996); Poli, Langdon, and Mcphee (2008)) is an

artificial intelligence (AI) based exclusively data-driven

modeling formalism with several attractive properties.

Specifically, it is a stochastic, population-based, and evo-

lutionary search and optimization algorithm that follows

Darwinian principles of natural selection and reproduc-

tion. It shares a number of features with an AI-based

nonlinear optimization method termed genetic algorithms

(GA) Holland (1975). Given an objective function, GA effi-

ciently searches and optimizes values of the decision vari-

ables that would maximize or minimize the function. On

the other hand, GP was introduced as a method for auto-

matically generating computer programs that perform pre-

defined tasks Poli, Langdon, and Mcphee (2008). There

exists another novel GP application known as symbolic

regression (SR), which is of interest to this study.

Given a set of example input-output data, the

GP-based SR secures a function (expression/model)

whose output satisfies a desired condition/property.

Specifically, it searches and optimizes both, the specific

form (structure) and the associated parameters of an

appropriate linear/nonlinear data-fitting function. It is

noteworthy that unlike the two widely employed AI-

based data-driven modeling formalisms, namely, artifi-

cial neural networks (ANNs) and support vector regression

(SVR), GP does not make any assumptions regarding the

structure and parameters of the data-fitting function.

The GP technique has been successfully used in a variety

of modeling applications in chemistry and chemical

engineering, for example, in the k-value prediction of

crude oil Patil-Shinde et al. (2014), treatment of oily

wastewaters Yi and Wanli (2011), assessment of soil

liquefaction Fattah (2012) and compressibility factor

Yang and Soh (2002), soft-sensor development Wang

et al. (2008), estimation of higher heating value of bio-

mass fuels Sharma and Tambe (2014), and coal gasifier

modeling Holland (1975). The unique benefits of GP-

based symbolic regression include (a) a human insight

into and interpretability of the obtained models, (b)
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identification of the key variables and their combination

in the data, and (c) generation of expressions with

reduced complexity for easy deployment into computa-

tional models Ghugare et al. (2014). In the following, the

basics of the GP-based symbolic regression are

described.

Consider a multiple input – single output (MISO)

example dataset, D= {xi, yi}(i= 1, 2, …, Np), consisting of

Np input-output patterns. Each input pattern/vector (x)

houses N elements (x= (x1, x2, …, xN)
T) and the corre-

sponding scalar output is referred to as, y. The task of

GP-based SR is to fit a suitable linear/nonlinear function

(f), which best fits the dataset, D:

y = f x1, x2 . . . , xN ; α1, α2, . . . , αMð Þ (1)

where, α represents an M-dimensional vector of function

parameters, α= α1, α2, . . . .. αM½ �T . Towards searching and

optimizing the structure/form of f, as also the associated

parameters α, GP begins by randomly generating a popu-

lation of candidate solutions to the given function fitting

problem. Each candidate solution (expression/function/

model) in the population is represented in the form of a

tree structure. In Figure 1(a), a tree structure representing

the expression “(x2–9x1) (5/x3)”, is illustrated wherein

two branches emanate from the root node. Each node

in these branches is randomly chosen to be either a

‘function’ or a ‘terminal’ node. The function node (also

called an “operator node”) defines a mathematical

operator that belongs to a set comprising, for instance,

arithmetic, trigonometric, inverse-trigonometric, exponen-

tiation, and logarithmic operators. The terminal (also

termed “operand”) node represents an input variable

(xn) or a function parameter (αm). Tree structures vary

in their depths and they can be easily evaluated in a

recursive manner. The said variation in tree depths

allows construction of candidate solutions of varying

lengths and complexity.

A typical implementation of a generic GP comprises

following steps: initialization, fitness evaluation, selection,

crossover and mutation. Among these, the last four steps

are performed iteratively until a best data-fitting linear/

nonlinear candidate solution (expression) is obtained.

The said procedure is repeated by systematically varying

GP algorithmic parameters to secure an overall best data-

fitting model. The flowchart of a generic GP procedure is

provided in Figure 2.

Figure 1: Schematic of a generic GP: (a) illustration of a tree structure representing “(x2–9x1) (5/x3)”, (b) random selection of branches

for reproduction, (c) crossover operation, and (d) mutation operation. Symbols in the figure denote following operators (function nodes):

(“+ ”) addition, (“−”) subtraction, (“*”) multiplication, and (“/”) division; terminal (operand) nodes define inputs {xn} and function

parameters {αmg.
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Genetic programming implementation is a stochasticandnot

a deterministic procedure; hence, it is likely that repeated GP

runs – for instance, using different random initializations –

will lead to different converged solutions. Analysis of a set of

several runs is therefore required to produce an acceptable

model. An in-depth treatment of the GP procedure can be

found, for example, in Enwald, Peirano, and Almstedt

(1996), Kotanchek (2004), Wang et al. (2008), Sharma and

Tambe (2014) and Shrinivas et al. (2016).

2.2 CFD model equations

The conservation equations of mass and momentum for

gas phase (g) and solid phase (s) utilized in this study are

given below.

Equations of Continuity

∂ εgρg

� �

∂t
+∇ εgρgug

� �

=0ðGas phaseÞ (2)

∂ εsρsð Þ
∂t

+∇ εsρsusð Þ=0ðSolid phaseÞ (3)

Momentum balance

∂ εgρgug

� �

∂t
+∇ εgρgugug

� �

=∇ εgτg
� �

− εg∇P

+ εgρgg − β ug − us
� �

ðGas phaseÞ

(4)

∂ εsρsusð Þ

∂t
+∇ εsρsususð Þ=∇ εsτsð Þ− εs∇P

+ εsρsg + β ug − us
� �

−∇psðSolid phaseÞ

(5)

Figure 2: Flowchart of a generic GP-SR

implementation.
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Where εg and εs represent the volume fraction for gas and

solid, respectively (εs+ εg = 1), P denotes pressure, ps
defines particle-particle interaction, β refers to the fluid-

particle interaction coefficient (interphase momentum

transfer coefficient), i. e. the drag coefficient, ρ is the

density of particles, and τ denotes the stress tensor.

Closure modeling

Constitutive equations are required to close the govern-

ing equations of continuity and momentum. These are

given in Supplementary Material as Table S.1. The various

symbols appearing in the equations are defined in

Nomenclature.

In this study, performance of the GP based drag

model has been compared with a number of currently

available drag models, which are tabulated in Table 1.

2.3 CFD simulation

In the present study, CFD simulations were performed

for comparing the performance of the GP-based drag

model with various other models available in the lit-

erature. The simulations carried out here involve sys-

tematic variations in two significant input parameters,

namely, Reynolds number, and gas velocity, of the drag

models, and studying their effects on the bubble beha-

viour and bed height. Here, three dimensional

Cartesian coordinates were used; the walls were mod-

eled as impermeable. To account for the particle wall

interaction, specularity coefficient magnitude of 0.1

was used Altantzis, Bates, and Ghoniem (2015). The

gas distributor at the bottom of the bed was assumed

to be a fluid phase influx wall. At the top of the bed a

continuous outflow was assumed for the fluid and solid

phases, respectively. Continuous outflow implies that

Table 1: Drag models used in the performance comparison of GP-based model.

No. Drag model by Drag Model

 Gibilaro () β= 17.3
Re

+0.336
h i

ρg
ds

us
!

−ug
!�

�
�
�εsε

− 1.8
g ; Re =

ds us
!

−ug
!�

�
�
�ρgεg

μg

 Gidaspow and

Ettihadieh () β=

150ε2sμg
d2
p

+
1.75εsρg

dp
ug −us
�
�

�
�if εg < 0.8

3
4

ρgεsεg
dp

CD ug − us
�
�

�
�ε −2.65

g if εg ≥0.8

8

>
<

>
:

Where CD is given as Rowe, McGillivray, and Cheesman (1979)

CD =
24
Re

1 +0.15Re
0.687

� �

if Re < 1000

0.44 if nRe ≥ 1000

(

Re =
εgρgdp ug − usj j

μg

 Syamlal and O’Brien

()

β=
3εgεsρg
4dpv2r

Cd ug − us
�
�

�
�

Where Cd is given as Dallavalle (1948): Cd = 0.63 + 4.8ffiffiffi
Re
vr

p

" #2

Where vr is given as Garside and Al-Dibouni (1977)

vr=
1
2 A−0.06Rej j+ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0.06Reð Þ2 +0.12Re 2B−Að Þ+A2
q� 	

A= εg
4.14

B=
0.8εg

1.28εg ≤0.85

εg
2.65εg > 0.85

(

 Du Plessis () β=
26.8εg

3

1− εgð Þ
2
3 1− 1− εgð Þ

1
3

h i

1− 1− εgð Þ
2
3

h i2
εs

2

εg

μg
d2
p
+

εg
2

1− 1− εgð Þ
2
3

h i2

εsρg
dp

ug − us
�
�

�
�

 Arastoopour et al. () β= 17.3
Re

+0.336
h i

ρg
ds

us
!

− ug

!�

�
�
�εsε

− 2.8
g ; Re =

ds us
!

− ug

!�

�
�
�ρg

μg

 De Felice () β= 3
4CD

εsρg
dp

ug − us
�
�

�
�f εsð Þf εsð Þ= ε − x

g x =3.7−0.6exp −
1
2 1.5− log10Reð Þ2

� �
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the fluid leaves the bed at its own chosen rate with a

minimal upstream flow disturbance. The initial bed

height was identical to the experimentally determined

bed height at the minimum fluidization condition. A

freeboard area of 54% was provided for the bed expan-

sion and the simulations did not assume symmetry of

fluidized bed.

The governing eqs (2) to (5) were solved by using

(Commercial software FLUENT 14.5) the finite volume

method. The grid size of eight times the particle diameter

was used in simulations Altantzis, Bates, and Ghoniem

(2015), Gelderbloom, Gidaspow, and Lyczkowski (2003).

The computational domain was discretized into 635,635

rectangular cells and a time step of 0.001 sec was used in

the simulation. The relative error between the successive

iterations was specified by using a convergence criterion

for each stated residual component, such as pressure, and

velocities of gas and solid. A scheme known as Quadratic

Upstream Interpolation for Convective Kinematics (QUICK)

(Iaccarino 2001; Loha, Chattopadhyay, and Chatterjee 2012)

was utilized for the discritization of governing equations.

Time discretization was done using a first order scheme.

The Semi-Implicit method for Pressure-Linked Equations

(SIMPLE) (Iaccarino 2001; Loha, Chattopadhyay, and

Chatterjee 2012) was applied for the correction of pressure

and velocity. The linearized equations were solved using a

block algebraic multi-grid model method (Esmaili and

Mahinpey 2011). Table 2 summarizes the model para-

meters/conditions used in the CFD simulation of the 3D

fluidized bed.

3 Experimental Set-up

In this study, experiments were conducted to validate and

compare the performance of the proposed GP-based drag

coefficient model. Figure 3 shows a three-dimensional

fluidized bed that was constructed to study the formation

and travel of bubbles in a gas-solid fluidized bed. This

bed has a cross-section of 15 cm, height of 100 cm, and

depth equal to 1.3 times the width. A porous plate was

used for the distribution of gas, which yielded a pressure

drop of 15% in the fluidized bed. The plenum has dimen-

sions of 20 cm (width) x 3 cm (depth) x 30 cm (height). It

was packed up to the height of 15 cm for uniform dis-

tribution of the gas. The flow rate of the fluidizing media

(air) was accurately measured through a set of four

rotameters covering a range of 0–200 lit/min. Spherical

glass beads with a size distribution of 250–300microns

and density of 2,500 kg/m3 were fluidized using air as

the fluidizing medium. The static bed height of 0.4m

and solid volume fraction of 0.6 were used for obtaining

the data for studying the bed height and bubble

Table 2: Magnitudes of model parameters used in CFD simulations

of 3D fluidized bed.

Sr. No. Parameters Value

. Particle density , (kg/m)

. Gas density . (kg/m)

. Mean particle diameter . (m)

. Initial solid packing .

. Superficial gas velocity . … (m/s)

. Bed dimension .× .×. (m)

. Static Bed height . (m)

. Inlet boundary condition type Velocity-inlet

. Outlet boundary condition type Pressure-outlet

Time Stepping Parameters

. Time stepping type Fixed

. Time step size . (s)

. Number of time steps ,

. Max number of iterations per

time step



Under-relaxation factors

. Pressure .

. Density 

. Momentum .

. Volume fraction .

. Granular temperature .

. Specularity coefficient .

Mesh Parameters

. Mesh type Equi-spaced

quadrilateral

. Δx . (m)

. Δy . (m)

. Δz . (m)

. Total number of cells ,

Figure 3: Schematic of the experimental fluidized bed.
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behaviour. In the experiments, gas velocity was main-

tained at 0.21m/s.

4 Results and discussion

4.1 Development of GP-based drag model

For developing the GP-based drag model predicting the

magnitude of drag (β) (kg/m3s), five fluidization related

parameters, namely, Reynolds number (Re), gas velocity

(ug), void fraction (εs), particle diameter (dp), and fluid

viscosity (µg) were used as model inputs. An example set

(see Table S.2) consisting of 108 data vectors/patterns

was used in the construction of the model. The β values

in the data set were calculated by simulating six drag

models proposed by Gibilaro (2001), Gidaspow and

Ettihadieh (1983), Syamlal and O’Brien (1987),

Arastoopour et al. (1990), Du Plessis (1994) and De

Felice (1994). These models predict dissimilar values of

the drag coefficient over same parameter ranges. The

ranges over which models possess good prediction accu-

racy are also not specified unambiguously in the litera-

ture. Accordingly, in this study a model possessing

better drag prediction accuracy than the existing models

over a wide range of parameters, has been developed.

Here, magnitudes of Reynolds number were varied from

Remf to ReT to compute the corresponding β values.

While Remf is the value of Reynolds number calculated

at minimum fluidization velocity (umf), ReT is calculated

at terminal velocity (uT). The value of void fraction is

varied from fixed bed to lean bed condition. Each model

was simulated using a different set of Re and εs values

falling in the stated range. The β values specified in

Table S.2 served as the desired outputs of the GP-based

model. For developing this model, the example data set

was partitioned into training and test sets of sizes 81 and

27, respectively. The GP-based model predicting β was

developed using Eureqa Formulize (EF) software package

Schmidt and Lipson (2009). This software has been opti-

mized for developing parsimonious models possessing

good generalization ability. Towards obtaining an opti-

mal GP-based model, the effects of GP procedural para-

meters as also the various input normalization schemes,

were studied rigorously. The prediction accuracy and the

generalization performance of each model was evaluated

by computing coefficient of correlation (CC), and root

mean square error (RMSE), values using the desired and

the corresponding model-predicted values of β. These

quantities were computed separately for the training

and test data sets. The overall best GP-based drag

model was selected on the basis of its high CC and low

RMSE magnitudes in respect of both training and test

data sets. Such an optimal GP-based model for drag (β)

prediction is given as:

β=86.2*εs +
0.785*εs*Re + 18*εs

2

d2p
μg

� �

*εg
(6)

where Re =
ds us
!

−ug
!�

�
�
�ρg

μg
:

The CC and RMSE (%) magnitudes pertaining to the

predictions by the GP model (Eq. 6) for the training data

are: CCtrn=0.675 and RMSEtrn(%) = 12.1, and the corre-

sponding values in respect of the test data are:

CCtst=0.847 and RMSEtst(%) = 4.1. The relatively high

and comparable training and test set CC values and the

corresponding low and comparable RMSE values indicate

good prediction (recall) accuracy and an excellent gener-

alisation performance by the GP-based drag model.

The prediction and generalization performance of the

GP-based model was compared with that of the six other

models proposed by Arastoopour et al. (1990), Gibilaro

(2001), De Felice (1994), Syamlal and O’Brien (1987),

Gidaspow and Ettihadieh (1983), and Lundberg and Du

Plessis (1994). Table 3 lists the CC and RMSE values

pertaining to the β predictions made by the stated mod-

els using training and test data. It is seen in this table

that as compared to other models, the CC (RMSE(%))

values in respect of the β predictions made by the GP-

based model are highest (lowest) for both training and

test data. This result indicates that the GP-based model

possesses better prediction accuracy and generalization

capability than any existing model.

Table 3: A comparison of β prediction and generalization perfor-

mance of various drags models.

Training data Test data

Model CCtrn RMSEtrn (%) CCtst RMSEtst (%)

Arastoopour et al.

()

. . . .

Gibilaro () . . . .

De Felice () . . . .

Syamlal and O’Brien

model ()

. . . .

Gidaspow and

Ettihadieh ()

. . . .

Du Plessis () . . . .

GP model (eq. ()) . . . .
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4.2 Experimental validation of GP-based
drag model

In order to validate the GP-based drag model, experi-

ments were performed using the fluidization set-up

shown in Figure 3. Panels (a), (b) and (c) in Figure 4

show the experimental snapshots exhibiting changes in

the bed dynamics at three different times, while panels

(d), (e) and (f) display the FLUENT-software-simulated

contours obtained using the GP-based drag model. The

experimental snapshots and the corresponding simulated

contours correspond to the gas velocity of 0.13m/s. The

time required to achieve the steady state was three sec-

onds. The time average was carried out from 4 to 15 sec.

In the experimental snapshot taken at 0.7 s (Figure 4(a)),

two prominent bubbles are seen in the bed followed by a

few minor unremarkable ones. The corresponding simu-

lated contours (Figure 4(d)) exhibit a similar trend with a

few bubbles in the upper region of the bed. The symmetry

of the bubbles is observed when the bed is showing

transition from the steady state (fixed bed) to a turbulent

state (bubbling bed). After achieving the steady state

bubbling, the bubbles showed coalescence and break-

down. At 0.9 sec, the bubbles in the experimental snap-

shot (Figure 4(b)), as also in the contour plot (Figure 4

(e)), can be observed to travel further up in the bed with

changes in their sizes; specifically, the right side bubble

is more elongated in size than the one on the left. At 1.1

sec the small bubbles in the contour plot (Figure 4(f)), are

vanishing due to their bursting at the bed surface; a

similar behavior can be seen in the experimental snap-

shot (Figure 4(c)). As they approach the bed surface, the

bubbles in both the experimental and counter plots are

seen to move to the right, appearing to travel faster than

other bubbles. From the three contour plots (Figures 4(d),

4(e) and 4(f)), computed using the GP-based drag model,

it is observed that they have captured the salient features

of the experimentally observed bubble dynamics with a

good accuracy. Figure 4 essentially shows that the loca-

tions of bubbles in the contours match reasonably well

with those in the experiments although the number of

bubbles in experiments and contours vary. This could be

possibly due to the “wall” effects Altantzis, Bates, and

Ghoniem (2015), Li and Benyahia (2012).

4.3 Simulation and performance comparison
of drag models

The performance of the GP-based drag model in predict-

ing the drag coefficient, β, was compared with the corre-

sponding performance of six other drag coefficient

models proposed by, namely, Arastoopour et al. (1990),

Syamlal and O’Brien (1988), Gidaspow and Ettihadieh

(1983), Gibilaro (2001), De Felice (1994), and Du Plessis

(1994). This comparison was made over wide ranges of

fluidization parameters namely Reynolds number, gas

velocity, particle diameter and voidage. In Figure 5,

panels (a) to (e) display plots of the drag coefficient

predictions made by the above-stated six models as also

the GP-based model for solid volume fraction as a func-

tion of the Reynolds number. Here, the magnitude of

Reynolds number varies between Remf and ReT. For all

the five particle diameter values (275 µm, 390 µm, 462 µm,

Experimental snapshot Simulation using GP-based drag model 

(a) (b) (c) (d) (e) (f) 

0.7s 0.9s 1.1s 0.7s 0.9s 1.1s 

Figure 4: Comparison of the experimental and GP-model assisted CFD-simulated bubble behavior.
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550 µm, and 680 µm), the GP-model predicted drag coef-

ficient magnitudes are seen to exhibit a trend, which is

seemingly an average of the trends displayed by the β

predictions by other drag models. Also, for the entire

range of Reynolds number considered in the simulations,

the prediction of the GP-based drag coefficient model is

seen to conform to the trends exhibited by a majority of

the existing drag coefficient models.

Figure 6 shows plots of the experimental bed expan-

sion ratio (%) data Vejahati et al. (2009) and the corre-

sponding model predicted ratios as a function of the

superficial gas velocity; the said ratios were computed

using the GP-based model as also the models proposed

by Arastoopour, Pakdel, and Adewumi (1990), De Felice

(1994), Gibilaro (2001), Wen and Yu (1966), and Gidaspow

and Ettihadieh (1983). These simulations were performed

as described in section 2.3. It can be clearly seen from

Figure 6 that the usage of the existing drag models has

led to an underestimation of the bed expansion ratio

values with the model by Arastoopour, Pakdel, and

Adewumi (1990) predicting lowest values of bed expan-

sion ratio. The drag models by Gidaspow and Ettihadieh

(1983), and Wen and Yu (1966) have performed similarly

in this regard. In is, however, noteworthy that the bed

Figure 5: Plots showing the drag coefficient values computed by various models as a function of the solid volume fraction and Reynolds

number.

10 R. R. Sonolikar et al.: Genetic Programming Based Drag Model

Brought to you by | University of Melbourne

Authenticated

Download Date | 1/15/17 3:47 AM



expansion ratios computed using the GP-based drag

model exhibit the closest match with the corresponding

experimental ratio magnitudes over the entire range of

superficial gas velocity. These results clearly indicate that

when compared with the existing models, the GP-based

drag coefficient model has provided a superior prediction

of the experimentally observed bed expansion ratios.

Figure 7 shows a comparison of the experimental

Vejahati et al. (2009) and simulated bed pressure drop

data. In the beginning of fluidization, there exist large

fluctuations in the bed. These large fluctuations weaken

substantially when the bed attains a steady-state. Figure

7 shows the steady-state pressure drop values computed

using various drag coefficient models as a function of gas

velocity. As can be seen in Figure 7, once again the GP-

based drag coefficient model shows a better performance

than other drag models in providing the closest match

with the experimental pressure drop values. The results

displayed in Figures (4) to (7) are clearly indicative of the

outperformance by the GP- based drag model vis a vis

other existing models in predicting the bubble dynamics,

bed expansion ratio, and pressure drop values.

5 Conclusion

This study uses Geldart’s group B particles fluidization

data involving wide variations in Reynolds number and

solid volume fraction from the studies by Gidaspow and

Ettihadieh (1983), Arastoopour et al. (1990), Gibilaro

(2001), Du Plessis (1994), Syamlal and O’Brien (1987)

and De Felice (1994) to propose a new unified drag

model for fluidized beds. An infrequently utilized artifi-

cial intelligence based exclusively data-driven formal-

ism, namely, genetic programming (GP) has been used to

obtain the said model. The novelty of this formalism is

that without making any assumptions, it is capable of

searching and optimizing both, the structure and asso-

ciated parameters, of an appropriate linear or nonlinear

model that fits a given example input-output data set.

Exhaustive simulations were conducted for a 3D bub-

bling fluidized bed using the proposed GP-based model

and its performance was compared with that of a num-

ber of existing drag models. The results of this compar-

ison showed that the new drag model exhibits a

good agreement with the experimental results pertain-

ing to the pressure drop inside the fluidized bed, and

bed expansion. In fact, the GP-based drag model has

performed better than the existing models in represent-

ing the experimental results involving bed height, pres-

sure drop across the bed, and voidage. Owing to its

superior drag prediction ability and applicability over

a wide ranges of Reynolds number and solid volume

fraction magnitudes, the GP-based model proposed

here is capable of gainfully replacing the competing

models.

Notation

Cd drag coefficient

dp particle mean diameter (m)

g0 radial distribution coefficient

I unity matrix

I2D 2nd invariant of the deviatoric stress tensor (s−2)

∇P gas phase pressure drop (N/m2)

∇ps pressure drop due to solids (N/m2)

Re Reynolds number

Sk strain rate tensor (N/m2)

Uk velocity of phase k (m/s)

v′ fluctuating velocity (m/s)
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Figure 6: Comparison of the bed expansion ratio simulated using

various drag models with the corresponding experimental data.
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Figure 7: Comparison of the experimental steady-state values of the

pressure drop inside the bed and the corresponding values com-

puted using various drag models as a function of the gas velocity.
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Greek notation

β gas/solid momentum exchange (kg/m3s)

εg gas volume fraction

εs solid volume fraction

η coefficient used in eq. (6) of Table S.1.

θs granular temperature (m2/s2)

μs solid viscosity

μscoll collisional viscosity (Pa s)

μskin kinetic viscosity (Pa s)

μg gas viscocity (Pa s)

μk viscosity of phase k (Pa s)

ξk bulk viscosity (Pa s)

ρg gas density (kg/m3)

τg gas stress strain tensor (Pa)

τs solid stress strain tensor (Pa)

τk viscous stress tensor (N/m2)

ϕs transfer rate of kinetic energy (kg/s3 m)
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