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[1] Precise and accurate determination of the magnetotelluric (MT) impedance is
fundamental to valid interpretation. This paper deals with the results of hybrid processing
schemes in conjunction with the remote reference (RR), for a typical site out of several
sites collected over the wide band data (�103 to 10�3 Hz). The standard practice of MT
impedance estimation is the use of robust processing in conjunction with the remote
referencing. The estimation by robust technique helps in reducing the effect of outliers in
the electric field but is often not sensitive to the exceptional predictor (magnetic field)
data, which are called leverage points. The data processed with robust M estimation
(RME) exacerbated the bias problem in the dead band. The application of hybrid
(coherence weighted estimation (CWE) + RME, rho-variance weighting + RME) and
extra hybrid (CWE + rho variance + RME) approach helps in reducing the influence of
both the outliers in the electric field and the leverage points. These two approaches
perform considerably better than either data weighting scheme by itself.

Citation: Shalivahan, R. K. Sinharay, and B. B. Bhattacharya (2006), Remote reference magnetotelluric impedance estimation of
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1. Introduction

[2] The interpretation of magnetotelluric (MT) data
requires estimation of tensor impedance elements from the
electric (E) and magnetic (H) vector field measurements
assuming them to be a plane wave. There exists a linear
statistical model in the frequency domain which relates the
N � 1 vector E of observations of the response (also called
as dependent) variable to the NX2, rank 2 matrix H of
predictors (explanatory variables), Z is the solution 2 vector,
and assuming a homogenous plane wave, as

E ¼ ZHþM ð1Þ

where M is an N � 1 vector of random errors, and N is the
number of observations (i.e., N Fourier transform of N
independent data sections at a given frequency). The least
squares (LS) solution for model (1) is

Ẑ ¼ HHH
� ��1

HHE
� �

ð2Þ

where the superscript H denotes the Hermitian (complex
conjugate) transpose. The terms within parenthesis are the
average estimates of autopower and cross-power spectra
based on available data. The predicted values of the

response from the regression are derived from the observed
values by

Ê ¼ PE ð3Þ

Where the N � N matrix P is called the prediction or hat
matrix as it transforms the observed vector E into its LS
using equation (3). It is given by

P ¼ H HHH
� ��1

HH ð4Þ

or

Ê ¼ HẐ ð5Þ

The predictor matrix P is idempotent (PP = P) and
symmetric (PH = P). The regression residuals r is the
differences between the measured values of the response
variables E and predicted E (equation (5)). These serves as
an estimate on the random errors. The classical Gauss-
Markov theorem gives following condition for the linear
regression to yield the best linear unbiased estimate:
[3] 1. The error term, on average, has no effect on the

dependent variable.
[4] 2. Explanatory variable(s) are determined indepen-

dently of the values of the error term (and, therefore, the
dependent variable).
[5] 3. The error term has a constant variance; the obser-

vations of the error term are assumed to be drawn contin-
ually from identical distributions.
[6] 4. The observations of the error term are uncorrelated

with each other.
[7] The complex tensor impedance Z can be estimated by

Fourier transformation of time series and using the LS
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method to obtain the possible fit to equation (1) [Sims et al.,
1971]. However, for noisy data, this approach fails, see
Egbert and Livelybrooks [1996]:
[8] Equation (1) is appropriate to the case where noise is

restricted to the output or the ‘‘predicted’’ electric field
channels, while the input magnetic field is observed without
error. Thus the violation of this assumption would result in
LS estimated impedance to be biased downward [Sims et
al., 1971].
[9] It is, usually, necessary to estimate the response

function Z from data corresponding to large residuals,
which are usually called outliers. The common types of
outliers are: point defects and local nonstationarity. Point
defects are isolated outliers, which are independent of the
assumed linear statistical model (equation (1)). Some exam-
ples of point defects are transient instrumental errors and
spike noise due to natural phenomena (e.g., nearby light-
ning). Local nonstationarities in geophysical problems are
seen in observations of the time-varying fields (Ex, Ey, Hx,
and Hy): most of the time the data statistics are approxi-
mately constant i.e., coming close in satisfying equation (1),
but this stationary process is interrupted sporadically by
brief but intense disturbances such as magnetic storms with
markedly different characteristics [Chave et al., 1987], and
these are non-Gaussian in nature. Even severe bias could be
produced by auroral substorm source fields of a short spatial
scale [Garcia et al., 1997]. Some types of midlatitude
sources have short and temporally variable spatial scales,
which can also alter MT responses [Egbert et al., 2000].
Because of marked nonstationarity, departures from the
linear statistical model that produce very large residuals in
the data are more likely than ‘‘normal’’ or ‘‘expected’’ and
such residuals are heavy-tailed or very long tailed with a
Gaussian center. Therefore the conventional LS approach is
beset with problems.
[10] Thus there are basically two types of statistical errors

inherent in the estimation of response function: random and
bias errors due to E and/or H field noise. The statistical
errors are due to all errors normal or nonnormal. The
variance gives a quantitative measure of the precision of
an estimate. A precise estimate may still be inaccurate
because of bias error due to E and/or H field noise.
[11] To tackle the bias errors due to noise, remote

reference (RR) measurements of MT was suggested about
three decades back [Goubau et al., 1978a, 1978b; Gamble
et al., 1979a, 1979b; Goubau et al., 1984]. The equation of
estimating RR MT impedance in terms of power spectral
densities for magnetic field reference is given by [Vozoff,
1996]

Zxy ¼
ExR

*
y

D E

HxR
*
x

D E

� ExR
*
x

D E

HxR
*
y

D E

HyR*y

D E

HxR*y

D E

� HyR*x

D E

HyR*x

D E ð6Þ

where Rx and Ry are the remote magnetic field components.
The field components in asterisk indicate complex conjugate.
Schultz et al. [1993] andGarcia et al. [1997] have shown that
the RR can give severe bias in the auroral substorm source
fields of a short spatial scale. MTestimates even get distorted
from DC electric rail system [Junge, 1996].
[12] A number of MT processing methods have been

proposed on the basis of some sort of coherence weighted

estimates (CWE) [Stodt, 1983; Jones and Jodicke, 1984]
and apparent resistivity variance (rho-var) weighting esti-
mates [Stodt, 1983, also J. A. Stodt, Computation of MT
parameters and their error estimates, unpublished report
submitted to Phoenix Geophysics Ltd., 1980, hereinafter
referred to as J. A. Stodt, unpublished report, 1980].
Subsequently, the robust M estimates (RME) [Huber,
1981; Rousseeuw and Leroy, 1987] have been applied to
estimate the impedance functions [Egbert and Booker,
1986; Chave et al., 1987; Chave and Thompson, 1989;
Jones et al., 1989; Larsen, 1989; Sutarno and Vozoff, 1989,
1991; Larsen et al., 1996; Egbert and Livelybrooks,
1996; Egbert, 1997; Shalivahan and Bhattacharya, 2002;
Smirnov, 2003]. Banks [1998] has studied the effect of
nonstationary noise on electromagnetic response estimates
in the frequency range of 0.05–0.000167 Hz. RME process-
ing has long been used for very low frequency (<0.1 Hz) MT
andmagnetovariational data due to its easy availability. Jones
et al. [1989] have demonstrated the superiority of the RME
processing for low-frequency MT data and further suggested
that RR measurements, wherever possible, should be made.
[13] The RME methods tackle the noise on the electric

field but are often not sensitive to exceptional predictor
(magnetic field) data called as leverage point [Chave and
Thompson, 2004]. This happens particularly in the dead band
5 Hz to 0.05 Hz and the MT impedance estimates by RME
processing are severely biased [Egbert and Livelybrooks,
1996]. This happens because RME is sensitive to data, which
produce statistically unusual residuals. Such data may or may
not correspond to all of the influential data in a data set. Some
suggested methodologies for tackling the outliers and lever-
age points have been suggested by Egbert and Livelybrooks
[1996], Shalivahan [2000], Garcia and Jones [2002], Jones
and Spratt [2002], and Chave and Thompson [2004]. Egbert
and Livelybrooks [1996] have used for the first time, a hybrid
approach, i.e., combination of CWE with RME only for
single site MT impedance estimation over a wide band to
tackle the problems associated with the RME particularly in
the dead band (5–0.05 Hz). Shalivahan [2000] has used two
hybrid approaches, i.e., combination of CWE with RME as
well as rho-var weighting with RME in conjunction with RR
for improving the data quality for the entire frequency range
including the dead band. Garcia and Jones [2002] presorted
AMT data based on the power in the magnetic field channels,
selecting only those values, which exceed the known instru-
ment noise level by a specified amount. Jones and Spratt
[2002] preselected data segments whose vertical field power
was below a threshold value to minimize auroral source field
bias in high-latitude MT data.
[14] In this paper we compare different processing

schemes, i.e., CWE, rho-var weighting, RME, hybrid
approaches, i.e., the combinations of CWE with RME as
well as rho-var weighting with RME and extra hybrid
approach (CWE+rho-var weighting+RME), in the estima-
tion of RR MT impedance over a wide band (�103 Hz to
10�3 Hz) for a representative site out of 44 sites of
Dhanbad-Badampahar transect (Figure 1).

2. Data Acquisition

[15] A brief account ofMT data acquisition and processing
system of V5-16 multiple geophysical receiver of Phoenix
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Geophysics Limited, Canada used in fieldwork is described
here. At each site 2 tellurics and 3 magnetics sensors were
hooked up to signal processor unit (SPV5), which was
connected to a receiver (V5) through a communication
cable and placed at a distance of about 150 m from
SPV5. For RR MT measurements two sites had the same
configuration. Both the sites were synchronized to the GPS
clock. Time series data was collected at the SPV5 box. V5
system acquires as well as process the data. The time series
data is Fourier transformed and V5 acquires data in two
frequency ranges: (1) high range, 12 frequencies ranging
from 320 Hz to 7.5 Hz and (2) low range, 28 frequencies
ranging from 6.0 Hz to 0.00055 Hz. Each station along with
its RR site was occupied for 18 hours. Out of this, 3 hours
were for high range (320 Hz to 7.5 Hz) and 15 hours for low

range (6.0 Hz to 0.00055 Hz). The dipole lengths varied
from 100 m to 140 m.

3. Data Analysis

[16] The source for higher frequencies is broadband
radiation from lightning strikes that propagates between
the earth and the ionosphere to the measuring site where
as the source for low frequency is the micropulsation. There
exists a dead band in a part of the spectrum where the signal
levels are very low and lies between the frequency ranges of
two types of sources, i.e., thunderstorm activities and micro
pulsations. In this band the noise may sometimes be
stronger than the signal (noise/signal >1.0). The data are
often mostly noise with occasional bursts of real signal. The

Figure 1. Location map.
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data noise may also remain a problem for the low-frequency
signals.
[17] Following MT processing methods has been used:

(1) coherency weighted estimation (CWE), (2) apparent
resistivity variance (rho-var) weighting, (3) robust M esti-
mation (RME), (4) hybrid approach, and (5) extra hybrid
approach to remove the statistical errors. The data processing
begins by dividing the time series into a sequence of short
data segments and each is Fourier-transformed. This when
combined with frequency band averaging gives a series of L
complex data vectors for a given frequency w. The tensor
impedance Z (w) for that frequency is then estimated by
minimizing weighted-residual sums of squares. The weighted
deviation for the x component electric field is given as

X

L

i¼1

wi Exi � ZxxHxi þ ZxyHyi

� ��

�

�

�

2
ð7Þ

The weights wi are estimated from the data. The CWE, rho-
var and RME choose weights to emphasize the best quality
data.

3.1. Coherency Weighted Estimation

[18] In CWE the sequence of L Fourier coefficient vectors
[Egbert and Livelybrooks, 1996] are divided into q tempo-
rary contiguous groups. Generally, the coefficients for group
q typically correspond to all data collected in one of a series
of ‘‘runs’’ at the measuring site. Then for each group the
standard multiple coherence (gq

2) between the x component
of electric field and the magnetic field is computed. This
helps in determining the weights as a function of gq

2. The
data with higher value of gq

2 is given higher weight and vice
versa. For RR estimation of the tensor impedance, ordinary
and multiple coherences between local and remote fields
can also be computed [Stodt, 1983, also unpublished report,
1980] to assess correlations between sites and determine the
best reference pair. For a RR the generalized multiple
squared coherence between the observed electric field E
and its predicted value Ê with magnetic field (R) as a
reference and the local magnetic field as H is given as
[Chave and Thompson, 2004]

g
2
EÊ

¼
SER SRHð Þ�1

SRE
�

�

�

�

SEES
H
RE SHRHð Þ

�1
SHH SHRHð Þ

�1
SRE

ð8Þ

where Sxy is a cross power between vector variables x and y.
It is a complex quantity whose amplitude is analogous to the
standard multiple coherence and its phase is a measure of
the similarity of the local and remote reference variables.
The minimum value of squared coherency (gq

2) is set and
only those data segments meeting this minimum are used in
the estimation of the impedance. The coherence weight in
this instance consists of zeros and ones. J. A. Stodt
(unpublished report, 1980) and Egbert and Livelybrooks
[1996] have shown that CWE tends to increase the signal/
noise ratio.

3.2. Apparent Resistivity Variance (rho-var)
Weighting Estimation

[19] The expressions of variance are given by Gamble et
al. [1979b]. The variance in each element of ZR (impedance
estimation using RR) can be expressed in terms of known
average powers, if it is assumed that the noise is indepen-

dent of signals, and the noise is stationary. The variances
decrease as the number of measurements contained in the
average power increases. In this case this number has been
fixed at 20 (J. A. Stodt, unpublished report, 1980). Here the
variances of apparent resistivities (rho) in conjunction with
the remote referencing computed from principle impedance
elements have been used. These are first averaged to obtain
a minimum variance estimate.
[20] Let us assume that the base field noises are uncor-

related with reference field noise so that the estimates Z
R

are unbiased by correlated noise powers. The aim is to
obtain a weighted average of the four stable estimates,
which has the property that it is the minimum variance
unbiased estimate obtainable. This estimate is given by
[Gamble et al., 1979a, 1979b; J. A. Stodt, unpublished
report, 1980]

Z ij ¼
X

M

k¼1

WkZijk ð9Þ

where k indicates a sum over the weighted individual
estimates and M is the four possible reference pairs, Ex

REy
R,

Hx
RHy

R, Ex
RHx

R, and Ey
RHy

R used for the impedance estimates.
The weights take the form

Wk ¼
1=Var Zijk

� �

P

M

k¼1

1=VarZijk

ð10Þ

For the impedance estimate to be unbiased the sum of the

weights should be equal to 1.0, i.e.,
P

4

1

Wi = 1. It is important

to average the real and imaginary parts of the Zij
R, rather than

their magnitudes and phase, in order to avoid introducing
other bias error. If the individual Zk are unbiased and if we
have accurate estimates of the Var Zk, then equation (10)
will give an unbiased estimate with the minimum possible
variance. If the Var Zk are not estimated accurately, then too
equation (10) gives an unbiased estimate but not with a
minimum possible variance. The variance of the average
estimate Zij

R is given as (J. A. Stodt, unpublished report,
1980)

VarZ
R

ij ¼
X

4

k¼1

W 2
k VarZ

R

ijk
þ 2

X

3

k¼1

X

4

l¼2

WkWlCov ZR
ijk
;ZR

ijl

� 	

ð11Þ

If the variance estimates are accurate, then VarZijk

R will be
smaller than any of the VarZijk. Gamble et al. [1979b]
defined Var Zij as

VarZR
ij ¼

rij j2 Aj

�

�

�

�

2

N Dj j2
ð12Þ

where

Dj j2¼ HxRx
*HyRy

*� HxRy
*HyRx

*
�

�

�

�

r ¼ E� Ê

A*x ¼ R*x HyR*y � R*y HyR*x

A*y ¼ R*y HxR*x � R*x HxR*y

Aj

�

�

�

�

2
¼ AjAj

*
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N is the number of independent determinations of each
field. For large value of N, one can replace jrij

2 in equation
(12) as

rPij j
2
¼ Ei

�

�

�

�

2
� 2 Re ZR

ixHxEi*þ ZR
iyHyEi

h

* � ZR
ixZ

R
iy
*HxHy*

i

þ jZR
ixj

2jHxj
2jZR

iyj
2jHyj

2

where Re(x) is the real part of x. N is the number of averages
in spectral estimates, i = x, y and j = x, y.
[21] When the individual estimates Zk are obtained

from disjoint sets of spectra, then the variance of Zij is

VarZij ¼
X

M

k¼1

W 2
k VarZijk ð13Þ

If equation (10) is substituted into equation (13), ZR
ij

VarZR
ij ¼

1

P

k

1=VarZijk

� 


and the variance of rho is (0.2T)2 Var (Zij).
[22] The use of inverse variance as weights not only

incorporates the signal criteria but also down weights the
events for high coherence between the orthogonal compo-
nents of magnetic field and down weights events for low
multiple coherence between the output electric field and the
input magnetic components [Jones et al., 1989].
[23] Variance of ZijR is correctly defined by the equation

(13) only if (1) R is uncorrelated with the noise in E and H,
(2) the noises in E and H are independent of the signals, and
(3) the noises are stationary. The purpose of RR technique is
to ensure that the first condition is satisfied. The second
assumption is likely to be well satisfied if the noises are
generated locally. On the other hand, if the noises arise from
inhomogeneous atmospheric source, both assumptions 1
and 2 may be violated. Assumption 2 may also be violated
if the measuring equipment produces errors that are pro-
portional to the signal [Gamble et al., 1979b]. The require-
ment of noise stationarity is not particularly restrictive. Here
we do not need to assume that the signals are stationarity. ZR

and errors in ZR involve only the ratios of average cross
powers and since the electric and magnetic fields (both from
local and remote) are causally related, these ratios do not
depend on the statistics of the field. Stodt [1983] has shown
that the scheme tends to increase signal/noise ratio.

3.3. Robust M Estimation

[24] Robustness signifies some level of insensitivity to a
small number of outliers in the data. For MT data, robust M
estimation (RME) are used [Egbert and Booker, 1986;
Chave et al., 1987; Chave and Thompson, 1989; Jones
et al., 1989; Larsen, 1989; Sutarno and Vozoff, 1989,
1991; Egbert and Livelybrooks, 1996; Bhattacharya and
Shalivahan, 1999]. The impedance estimates by RME are
robust against violations of distributional assumption and
thus are resistant to outliers. The weights in this case are

determined iteratively from the normalized residuals (r).
The Huber weights as used by Egbert and Booker [1986],
Chave et al. [1987], and Egbert and Livelybrooks [1996] are
given as

wi ¼
1 rij j 	 1:5

1:5= rij j rij j > 1:5

8

<

:

ð14Þ

and

ri ¼
Exi � ZxxHxi þ ZxyHyi

� �� �

ŝ

Here ŝ is the estimate of the scale of the error in the
impedance estimation and determines which of the
residuals are to be regarded as large. The median
absolute deviation from median (MAD) gives one of
the most robust estimates of scale. The sample value of it
is given as:

SMAD ¼ r � r0j j Nþ1ð Þ=2 ð15Þ

Where N is the total number of values quantity r0 is the
median of r. The theoretical MAD is the solution sMAD

of

F m
0 þ sMADð Þ � F ~m0 � sMAD

� �

¼ 1=2 ð16Þ

Where m0 is the theoretical median and F denotes the target
cumulative distribution function. Robust processing pro-
ceeds as follows: the LS approach determines the initial
estimate of the impedance at each frequency, and is further
used to compute the residuals r in (1) and ŝ from the ratio of
equations (15) and (16). An iterative procedure is then
applied with the weights as in (14) where the residuals from
the previous iteration are used to get scale and weights. This
process is repeated until convergence is reached. Huber
[1981] has proved that the weights as used in equation (14)
converge.
[25] The RME can be even severely biased than the least

squares when typical signal/noise ratios are low (in dead
band). It is also worth noting that the generalized RME,
which down weights leverage points which may actually
down weight or throw away the real data with the best signal-
to-noise ratio exacerbating the bias problem.

3.4. Hybrid Approach

[26] The problem of affecting estimates when working
with low signal data (in dead band) have been dealt by Park
[1991] and Larsen et al. [1996] by reanalyzing all of the time
series points each time a new estimate is made. This way, the
potential bias from the a few bad transfer functions estimates
is quickly identified and eliminated.
[27] In order to overcome the problem of estimates in the

dead band we apply hybrid RME. The data recorded during
the periods of high signal power are weighted more heavily
and then RME is applied. The weights are determined using
CWE and rho-var, and subsequently, RME is applied:
(1) CWE plus RME, as CWE tends to improve the S/N ratio
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and hence can decrease the bias effect; subsequently, the
RME is applied to this CWE data [Egbert and Livelybrooks,
1996]; and (2) rho-var weighting plus RME, as rho-var tends
to improve the signal/noise ratio and hence decreases the bias
effect due to the low signal data. Using rho-var, we weight
more heavily the data recorded during the periods of high

signal power. The RME is then applied to this rho-var
weighted data (J. A. Stodt, unpublished report, 1980).

3.5. Extra Hybrid Approach (CWE Plus
rho-var Weighting Plus RME)

[28] The extra hybrid scheme works in three stages. First,
it weights according to the coherences of the induced

Figure 2. Apparent resistivity and phase curves, respectively, for site 100: (a) and (b) standard LS;
(c) and (d) CWE. Figures 2a and 2b are single site and Figures 2c and 2d are RR site estimates. Apparent
resistivity and phase curves, respectively, for site 100: (e) and (f) rho-var; (g) and (h) RME. Figures 2e to 2h
are RR site estimates. Apparent resistivity and phase curves, respectively, for site 100: (i) and (j)
CWE+RME; (k) and (l) rho-var weighting + RME. Figures 2i to 2l are RR site estimates. Apparent
resistivity and phase curves, respectively, for site 100: (m) and (n) CWE + rho-var weighting + RME.
Figures 2m and 2n are RR site estimates.
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electric field with the corresponding component of magnetic
field and minimizes the effect of incoherent noise on electric
field. This step is followed by inverse variance as weights.
Finally, the iterative reweighting RME scheme is used to
clean up outliers.

4. Discussion and Conclusions

[29] Forty-four RR MT data were collected over the
Dhanbad-Badampahar transect (Figure 1). We present the
different RR MT processing techniques with wide band data
for a site Sundarpahari (100) (23�5704600N; 86�3200500E)

whose reference site was at Patamda (021) (22�5302600N,
86�2104100E).
[30] For processing, the data are segmented into 1024 points

per channel records. In level 3 (320–60 Hz) and level
4 (40–7.5 Hz), only two records are continuous at each
minute of processing. However, in level 5 (6–0.00055 Hz)
the sample rate is only 24 Hz and is sampled continuously.
Each 1024-point record is divided into 32 segments of
32 point each. Several segments are processed together
for each frequency band and then a weight factor is
calculated for this small group. The weighted cross power
is then added to accumulated cross-power sum. The cosine
window is applied to each 32 points in a data record. The

Figure 2. (continued)
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14-point cascade decimation after [Wight and Bostick, 1980]
filter is applied to the data to get the next level of time
series. In level 5, this is applied 14 times to get the low
period information.
[31] Figures 2a and 2b are the single site standard LS

estimates showing apparent resistivity and phase curves,
respectively. CWE and rho-var weighting estimates (Figures
2c, 2d, 2e, and 2f, respectively) with RR processing are
smooth compared to the single site standard LS estimates.
However, the estimates for some frequencies are not precise
(larger errors). However, the data in the dead band are
biased. RR RME (Figures 2g and 2h) show biased data and

large bars in the dead band as compared to the single site
standard LS estimates. RR CWE with RME (Figures 2i and 2j)
does not show improvement in this band. RR rho-var
weighting with RME (Figures 2k and 2l) reduces both the
bias and error bar considerably in this band. For the extra
hybrid estimates (i.e., CWE+rho-var weighting+RME)
(Figures 2m and 2n) the error bars are dramatically reduced
in this band and thus the estimates are smooth as well as
precise as compared to all other RR estimates.
[32] The LS estimates (both amplitude and phase;

Figures 2a and 2b) are distorted. This may be explained
by the presence of coherent noise events in the original time

Figure 2. (continued)
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series that are not eliminated either by CWE or rho-var
when applied in conjunction with the remote reference. The
robust estimates are also distorted. The estimates are biased
in the hybrid approach (CWE+Robust) scheme indicating
the presence of high coherency between the orthogonal
components of the magnetic field. The estimates obtained
from rho-var+RME improve estimation but still remain
distorted indicating the presence of coherent events between
the output electric field component and the input magnetic
field components. The distortions in the amplitude of
the transfer functions might be observed when significant
uncorrelated noise is present in input channels and also the
coherency between the orthogonal components of the magnetic
field is large. However, the phases are usually not distorted.
The distortion of the phase here is an indication of the
presence of correlated noise. The extra hybrid approach
gives estimates which are not distorted indicating that the
coherent events between the output electric field and
input magnetic field components as well as between the
two orthogonal components of magnetic field along with
the performance of RME removes the distortion. However,
for the xy component of both amplitude and phase all the
processing schemes resulted in the distorted estimation for
the longest period indicating that either the signal strength
is too low or the presence of uncorrelated noise in input
channels and also the coherency between the orthogonal
components of the magnetic field is large. Distorted phase
in the lowest frequency indicates the presence of correlated
noise.
[33] The standard practice of MT impedance estimation is

the use of robust processing in conjunction with the remote
referencing. The use of remote reference method helps in
overcoming the bias effect from uncorrelated local magnetic
field noise. The estimation by robust technique helps in
reducing the effect of outliers in the electric field but is often

not sensitive to the exceptional predictor (magnetic field)
data, which are called leverage points. In the dead band
often due to the low levels of signals and high levels of
noise the signal/noise ratio is often very low. Thus the
outlier data are rare time segments with useful signal. The
robust technique may thus actually down weights or throw
way data with the best signal-to-noise ratio and thus
exacerbating the bias problem. This problem is overcome
when the data recorded during higher signal power is given
larger weights than that recorded during lower signal power
and then subsequently applying the robust technique. In
general it has been found that when the data is weighed both
with the CWE and rho-variance technique and then the
robust technique is applied it gives a smooth as well as
precise estimates of the impedance. Thus the application of
hybrid approach helps in reducing the influence of both the
outliers in the electric field and the leverage points. We also
processed a data very close to DC electrified railway track
(the results not presented here) and found that the proposed
technique fails here. Because of the presence of DC elec-
trified railway track there is a contamination of the MT
signal by nonuniform EM cultural noise sources such as
electrified railway track, since this type of source is at
ground level and it does not give the same field configuration
that of the ionospheric sources for MT field. MT transfer
functions cannot be estimated from time series highly con-
taminated by correlated noise signals by using a remote
magnetic site free of correlated noise.
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