HAYYHO-TEXHUYECKMI BECTHUK MHOOPMALIMOHHBIX TEXHOMOM I, MEXAHWKI 1 OMTUKN

CeHTABPb—OoKTA6PL 2021 Tom 21 N2 5 http://ntv.ifmo.ru/ HAVHHO-TERHNSECKNA BECTHWE Sl YHHBEPCHTET KTHD.
SCIENTIFIC AND TECHNICAL JOURNAL OF INFORMATION TECHNOLOGIES, MECHANICS AND OPTICS IHE“FM“"HIHHHI]‘B:Hﬂl“ml Mmm" " [IIITIIII
YHUBEPCHTET MTMO September—October 2021 Vol.21No 5 http://ntv.ifmo.ru/en/
ISSN 2226-1494 (print) ISSN 2500-0373 (online)

doi: 10.17586/2226-1494-2021-21-5-738-747

Software restructuring models for object oriented programming
languages using the fuzzy based clustering algorithm
Sarika Bobde!>?, Rashmi Phalnikar?
L2 MIT World Peace University, Pune, Maharashtra, 411038, India

1 sarikabobde27@gmail.com™, https://orcid.org/0000-0002-6693-1364
2 rashmi.phalnikar@mitwpu.edu.in, https://orcid.org/0000-0002-2004-7944

Abstract

Advances in the domain of software-based technology pave the way for widespread use of object-oriented programs.
There is a need to develop a well-established software system that will reduce maintenance costs and enhance the
usability of the component. While designing a software system, its internal structure deteriorates due to prolonged or
delayed maintenance activities. In such situations, restructuring of the software is a superior approach to improve the
structure without changing external behaviour of the system. One approach to carry out restructuring is to use refactoring
on the existing source code for improving the internal structure of the code. Code refactoring is an effective technique
for software development that improves the software’s internal structure without changing its external behaviour. The
purpose of refactoring is to improve the cohesion of existing code and minimize coupling in the existing module of a
software system. Among numerous methods, clustering is one of the effective approaches to increase the cohesion of
the system. Hence in this paper, the authors suggest to extract member functions and member variables and propose to
find their similarity by Frequent Usage Pattern approach. Next, the proposed fuzzy based clustering algorithm perform
effective code refactoring. The proposed method utilizes multiple refactoring methods to increase the cohesion of the
component without any change in the meaning of the software system. The proposed system will offer automated support
to change low-cohesive to high-cohesive functions. Finally, the proposed model has been experimentally tested with
object-oriented programs.

Keywords
refactoring, cohesion, clustering, member function, member variable, Frequent Usage Pattern, fuzzy c-means clustering,
k-nearest neighbour

For citation: Bobde S., Phalnikar R. Software restructuring models for object oriented programming languages using
the fuzzy based clustering algorithm. Scientific and Technical Journal of Information Technologies, Mechanics and
Optics, 2021, vol. 21, no. 5, pp. 738-747. doi: 10.17586/2226-1494-2021-21-5-738-747

VJIK 004.438

Monenu pecTPyKTYPHU3aLMU MIPOrPAMMHOIO0 o0ecrnedeHust
JJIS1 A13bIKA 00bEeKTHO-OPHEHTHPOBAHHOIO NPOIPAMMHPOBAHUA
C UCITOJIB30BAHUEM aJIloOpUuT™Ma HeUYeTKoM KJacTepusainumn
Capuka Boone!™, Pammn [xansnukap?

1.2 [1Ixona KOMIBIOTEPHON MHKeHEpUH U TexHonorui, MIT — Beemupnbiii yausepeunter, [Tyna, Maxapamrpa,
411038, Ungus
I sarikabobde27@gmail.com™, https://orcid.org/0000-0002-6693-1364
2 rashmi.phalnikar@mitwpu.edu.in, https://orcid.org/0000-0002-2004-7944

AHHOTALUA

Joctmxenust B 001acTH MPOTPAMMHBIX TEXHOJOTUH OTKPBIBAIOT IYTh JUISI IIMPOKOTO HCIIOIB30BaHUS 0OBEKTHO-
OPHCHTHPOBAHHBIX mporpamM. CymiecTByeT HeOOXOIUMOCTh B pa3paboTKe 3apeKOMEHIOBABIICH Ce0sl CHCTEMBI
MPOrPaMMHOTO 00€CIICUCHHSI, KOTOpasi CHU3UT 3aTpaThl HA OOCITY)KMBAHHE U MOBBICHT YI0OCTBO HCIIOJIb30BAHHUS
koMmrnioHeHTa. [Ipu npoekTUupoBaHUM MPOrPaMMHON CUCTEMbl €€ BHYTPEHHSSI CTPYKTypa yXyAllaeTcs u3-3a

© Bobde S., Phalnikar R., 2021

H y4YHO-TexHM4Yeckuii BECTHUK MHDOPM LMOHHbIX TEXHONOMMIA, MEX HUKWU 1 onTukn, 2021, Tom 21, N2 5
738 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

S. Bobde, R. Phalnikar

HPOJIOJKUTEIILHBIX HIIH OTJIOKEHHBIX paboT 110 TEXHUYECKOMY O00CITY)KHBAHHIO. B TaKNX CUTyalusIX pecTpyKTypH3aIus
MporpaMMHOI0O 06ecne'-lel-[1/1;1 —_— _]'ly‘[LI_lI/Iﬁ NOAXOA JIs YIIy4IIE€HUsSI CTPYKTYPHBI 663 HN3MCECHCHH BHCIIHECTO IMOBCACHUS
cucrembl. OZIMH U3 TIOAXO/I0B K PECTPYKTYPU3ALHN — HCIOIb30BaHKHEe pe(hakTOPHHra IPUMEHAEMOTO HCXOAHOTO KoJia
JUIS YAyqLIeHUsI BHYTPEHHEH CTPYKTYpHI Kofa. PedaxropuHr Koma — 3 eKTHBHBINA METO pa3padOTKH IPOrpPaMMHOTO
obecrieueH s, KOTOPBIi yydlllaeT BHYTPEHHIOI CTPYKTYPY HPOrPaMMHOT0 obecredeHnst 0e3 M3MEHEHHS ero BHEIIHETO
noBefeHus. Llenp pedakTopuHra — yiydiieHue CBI3HOCTH HCIIONB3YEMOro KOJa M MUHMMH3AIHMS CBSI3U B MOJYJIE
nporpaMMHOH crcTeMsl. Kitactepnzanust — ouH 13 3¢ eKTHBHBIX TOIX00B K YBEINIECHHIO CITIOYEHHOCTH CHCTEMEL.
B pabore npennoxeno u3BiedeHne QyHKIHUHA-WICHOB U IEPEMEHHBIX-YJICHOB M BHIITOJHEHHE MTOUCKA UX CXOJICTBA C
nomolneio noaxona «11labmon yactoro ucnonbp30BaHUs». AJITOPUTM HEYETKON KiacTepu3anuy aaeT 3(dexTHBHBIN
pedaxropuHr koza. [IpearaeMplii METOJT HCTIONB3YET HECKOIBKO METOIOB pe(haKTOPHHTA [UIsl HOBBIILICHHUSI CBI3HOCTH
KOMIIOHEHTa 0e3 Kakoro-mndo N3MEHEHUs CMbICIIa IPOrPaMMHON CHCTEMBI. [IpecTaBIeHHas cucteMa peKOMEHIyeT
ABTOMATHYECKYIO MOANCPIKKY Ul M3MEHEHHs (QYHKIHH ¢ HU3KUM YPOBHEM CIEIUICHHs Ha (YHKIMH C BHICOKHM
ypoBHeM cuerieHus. [IpeaioxkeHHas MoJeb IKCIEPUMEHTAIBHO IPOTECTHPOBaHa ¢ 0OBEKTHO-OPHEHTHPOBAHHBIMU
MPOrpaMMaMH.

KiioueBnble c10Ba
pedaKTOpHUHT, CBSI3HOCTb, KiIacTepHu3anus, QyHKIUS YWICHCTBA, IEPEMEHHAs, 9YaCTO UCIIONIb3YyEMbIi ATTEPH, HEUCTKas
KJIACTEpU3aIHsI METOJIOM C-CPEIHUX, k-Onmmxaimii cocen

Ccbuika pas qutupoBanusi: boone C., [Ixamsankap P. Mogenn pectpykTypHu3aiuy mporpaMMHOTO 00€CTIeUeHNS ISt
S3bIKa 00BEKTHO-OPHEHTHPOBAHHOTO MPOrPAMMHPOBAHHS C HCHOJIB30BAaHUEM QJITOPUTMA HEUSTKOH KIlacTepu3aruu //
Hay4no-TexHH4Yecknii BeCTHUK HH()OPMAIIMOHHBIX TEXHONOTHH, MexaHuku 1 ontuku. 2021. T. 21, Ne 5. C. 738-747
(nHa aHn. 513.). doi: 10.17586/2226-1494-2021-21-5-738-747

Introduction

Nowadays, object-oriented programs play an
important role in software development scenarios and are
extensively used by the research community. Also, software
engineering always aims to provide low-maintenance
software systems with low maintenance costs and time
[1, 2]. Many researchers have reported that object-
oriented practice is a beneficial method for developing
software systems with good quality. At this point, good
quality software defines that the system is manageable,
reusable, easily modifiable and extensible based on the
requirements [3, 4]. The changing requirement can lead to
the continual development of real-world software. But the
code becomes complicated when the software is modified
and adapted. Then, its software quality diminishes, and
the overall development cost also increases [3—5]. This
generates the necessity for the methods that lessen the
software complexity and therefore improve the quality and
diminish the cost of maintenance. This type of technology
is called refactoring, or refactoring in the development of
object-oriented (OO) software. Refactoring has written the
code into a simplified procedure for improving its internal
operation without changing its external behaviour.

Software refactoring objective is to improve efficiency,
such as understanding many aspects of quality. This makes
it convenient for developers by making the program faster
and helping in finding errors. As refactoring approaches
change the internal code structure, quality metrics like
coupling and cohesion also change [7-9]. The good quality
software represents maximum cohesion and minimum
coupling measure. Whenever developers planned to
augment software quality, its coupling and cohesion became
more challenging or more satisfying. If the outcome of
quality metrics was not satisfied, the entire system tends
to fail with high complexity [10]. By keeping this in mind,
designers planned for an automated approach that has
emerged as a suitable solution. Among various methods,
pattern recognition concepts are applicable for achieving
high cohesion software components by employing

a refactoring technique. Generally, in the software
development field, the cohesion measure is elaborated
as the degree to which several software components are
related. These measures are implemented at the class level
of the code [11].

Researchers and programmers are now focused on the
high cohesion model. Because it possesses advantages
such as reusability, maintainability, understandability, and
ability to modify the code, but these characteristics are not
supportable in the low cohesion component. Generally, in
a software framework, a poorly structured class comprises
member functions and member variables that are not
related to a class. Thus, for enhancing the modularity
of an object-oriented software system, refactoring is a
well-suited approach. In refactoring models, various
operations like Move Method, Extract Class / Method
are applied to improve its effectiveness without changing
code functionality or behaviour. Maintenance of the code
becomes more complex, if there are larger numbers of
complex classes with unrelated functions and members
[12, 13]. This kind of difficulties is minimized using
clustering approaches where relatedness among member
functions and member variables are grouped based on
similarity. Afterwards, refactoring procedures are applied
to eliminate mistakes recognized from the clustering
approach.

While restricting software, these steps are followed
to get the efficiency of the code which means that the
internal structure of code improves. Thus, the reliability
of the software model improves, and the number of
the efforts taken for maintenance decreases. The most
effective model to measure and specify the relatedness
between member functions is the FUP approach. Here the
member function usage pattern refers to the set of member
variables that are accessible by direct or indirect calls to
other member functions. This improves the consistency
of the software because if the member functions share the
same FUP between them, they will be linked to the same
internal data usage [14, 15]. So in this paper, we analyse
the software program to identify classes with unrelated

H y4HO-TEXHUYECKUI BECTHUK MHDOPM LIMOHHbLIX TEXHONOMMIA, MEX HUKW 1 onTukun, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

739

Software restructuring models for object oriented programming languages using the fuzzy based clustering algorithm

member functions and propose appropriate refactoring
to eliminate the identified code problem and improve the
software program infrastructure. This helps to improve
the cohesive quality of the system. This metric is based
on information collected by using frequent usage patterns
of member functions. The clustering algorithm aims to
group the respective member functions. Based on these

clusters, we propose a refactoring algorithm to provide a

set of refactoring processes that developers should follow

to improve cohesion without changing the specifications of
the software system.

The contributions of the study are illustrated as follows:
— The restructuring of software code is done for reducing

maintenance costs and improving reusability.

— Clustering approaches are included in the proposed
work to enhance the software design for the purpose of
refactoring.

— Different refactoring techniques are utilized to identify
errors in the software design.

— The utilization of different refactoring methods
improves the cohesion metric and execution time of
software systems.

The manuscript is prepared as follows: section II
describes the related work. Section III illustrates the
motivation of the research. The planned methodology is
elaborated in section I'V. Results and discussion are done
in Section V. Conclusion is provided in the final section.

Literature survey

This section details the review of existing literature in
software restructuring models. Among several kinds of
research, some of the latest works are illustrated as well.

Alkhalid et al. [16] exhibited the Adaptive K-Nearest
Neighbour (A-KNN) technique to achieve clustering based
on the similarity in attribute weights. This methodology
helps to support software designers in the refactoring
process at the method/function level. This was done by
means of discovering bad code or ill-structured software
entities. But the obtained accuracy was not up to the mark
with poor cohesion measure. So that internal complexity,
cost and maintenance efforts are not achieved in an
effective manner.

Rao et al. [17] presented a software refactoring model
using two approaches. At first, low cohesive classes were
discovered. Then clustering approaches were developed
based on supplemented agglomerative clustering and were
validated by Weyuker’s properties. For extracting class
refactoring, clustering concepts were applicable based on
Jaccard similarity metric values between class members.

Wang et al. [18] developed a multi model refactoring
approach at the system level that helps to discover the
move method, move field, and extract class refactoring
prospects. The presented technique merges and splits
the classes related among each other for acquiring ideal
functionality distribution from the system level. For
regrouping the entities, the weighted clustering method was
utilized depending on merged method level networks. The
bad codes obtained from inheritance and non-inheritance
hierarchies were removed through pre-processing and pre-
conditions approaches without modifying code behaviour.

Rathee et al. [19] examined the empirical evaluation
of different dependency relationships in modelling
dependency between different software components.
Then a weighted dependency measurement scheme was
developed by combining conceptual, structural, and change
history-based relationships between software components.
At last, various dependency models were estimated with
different clustering techniques and were applied with open
source Java code. These source codes are of dissimilar sizes
and from different domains.

Khan et al. developed an approach named Distributed
Object Oriented (DOO) based on the object-oriented
concept in the point of the reference period. The core
of DOO frameworks is the scattering of programming
classes between different centres, and its main goal has
no top-class circulation. Thus rebuilding is to be finished.
To reinforce performance, DOO programming was
restructured using a multifaceted strategy called the Neural
Network (NN). First, a class dependency graph (CDG)
was developed, in which hubs belonged to classes, and yet
hubs associated with classes between situations. Currently,
factors, lines, and import components were linked to the
classes in the CDG presented to NN for preparation. Then,
a set of prepared highlights was completed, using the OO
Framework Class Dependency Based Clustering (CDBC)
strategy, which was divided into subsystems with minimal
coupling. Finally, grouped classes were embedded in bunch
diagrams using the K-Medoid bunching method.

Alizadeh et al. [20] exhibited an interactive clustering
approach for refactoring the software. The authors utilized
different refactoring techniques with the help of multi-
objective search functions for enhancing the software quality.
They executed only the recommendation model for software
refactoring so the received feedback from the developers
may not be suitable for some refactoring strategies.

Sarika Bobde and Rashmi Phalnikar [21] presented a
code refactoring model in an object-oriented software model
to progress the cohesion metric of the code. The authors
used clustering techniques for restructuring the software
system and developed multiple refactoring approaches in
the source code for well developed software design. But
due to the lack of metric similarity selection, this presented
method failed to reach the best performance level.

After analysing the literature review, each methodology
contains some challenges. Based on that, some of the
identified problems are given below:

— Program with duplicate logic is hard to read and modify.

— It is a common fact that a good software quality should
possess high cohesion and low coupling measure. This
objective lacks in the mentioned state-of-art techniques.

— If the quality metrics are achieved in existing
approaches, then their computation time and accuracy
were not maintained.

To outfit the current problem and lessen the computation
amount, it is planned to implement a new clustering
algorithm in the current research.

Motivation of the research

The development of software programs is a big
business. While there is huge expense and efforts spent

740

H y4YHO-TexHM4Yeckuii BECTHUK MHDOPM LMOHHbIX TEXHONOMMIA, MEX HUKWU 1 onTukn, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

S. Bobde, R. Phalnikar

for preparing a code for its release, a few investigations
demonstrate that 40-65 % of the complete effort is spent for
maintaining software after delivery with the goal that the
maintenance is costly. These reasons motivate us to research
in this field by attempting to diminish maintenance costs.
Maintainability denotes making software easier which
can be done via modifications. Here some of the essential
modifications include bug fixes, integration of additional
features and adaption of software functionalities suitable
to different environments. When the maintainability of the
software is affected, its whole quality will be corrupted.
Modular and flexible software is generally easier to analyse
and manage than poorly structured or complex software.
Generally, programmers should possess knowledge about
well-structured projects and can be able to understand the
purpose of a particular code. Also, the code improvement
should be made in a short period of time. But, not all the
software “improvements” are worth doing. At every time
of modification, the cost becomes higher. In addition
to the cost, during the change in a program, there are
potential additional costs when the external functionality
of the software changes, ¢.g., updating test scripts and
documentation. In addition, any changes to the software
pose risks — new bugs may occur, or the code may be less
manageable. Due to these issues, many software businesses
choose to be conservative when making code changes. The
perceived benefit of the change should outweigh the costs
and risks considered.

Proposed methodology for software restructuring

Cohesion and coupling play a major role in designing
a good software model — both the metrics measure the
relatedness among different classes or modules. Generally,
attaining a reusable and low maintenance software system
is the desired goal, so the cohesion measure must always
be high. However, most of the time, the cohesion measure
for the particular module/class may lessen due to adding up

public Class CL_1

X

MV, MY,

new functionalities or maintenance activities in designing

software. To overcome this drawback, the proposed

methodology aims to enhance the cohesion of the module
by exploiting member variables (MV) usage patterns and
developing refactoring procedures on software.

— The method contained in the low cohesion class is
transformed into a high cohesion class.

— The classes are separated into two or more cohesive
classes.

— If the member function (MF) in different classes
contains the same MVs means, then splitting is carried
out under the basis of inheritance.

The upcoming section provides a detailed framework
of the proposed methodology. The current implementation
is carried out in Java, though the technique will also be
applied to other programming languages. Initially, the
constructed project, along with a total number of classes
init, (CL;, CL,, CLs, ..., CL,) is generated. Immediately,
the member variables (MV, MV,, MV5, ..., MV,) and
member functions (MF;, MF,, MF5, ..., MF,) are extracted
from each class that is contained in a software system.
Then the FUP (Frequent Usage Pattern) is calculated for
each MV from dissimilar MF in the class. Then, the FUPs
information is determined in the form of vectors. Here
each and every vector signifies the usage pattern of MVs
in place of the corresponding MF. This vector formation
is utilized to define the similarity in the MV usage pattern
between MFs. At once, the similarity measure is computed
among MVs usage patterns from MFs with the help of
these vectors. From the calculated similarity measure, the
clustering of MF is carried out through the proposed fuzzy
c-means clustering algorithm. The obtained cluster denotes
a single cohesive set of MVs. Finally, each MF cluster is
refactored using the proposed refactoring technique. The
stepwise process of the proposed methodology is displayed
in Fig.

The main objective of this proposed methodology is to
reorganize the internal structure of the program in order

MY,

TPvalnate siimilarity
between MEF's

I

Vector representation of FUP for each and every

MF's

Clustered by
FOM

Refactoring

F 4

|

inta,b;
public vold MF 2{} | Cly Cl, MY,
{ | T .
MR [1 -] 2 ‘ 1
inte; |
c=a*h | MF, | 4 3 |]
: MRy | 0 1 | 1
public void MF_2{ |
i |
! | 1
int ¢ .Uf"], 10]
o=hti
b
o
Extraction of Member |
variables and hMember 5
tunctions

FUP extraction tor each and every

MF's

Figure. Layout of the proposed methodology

H y4HO-TEXHUYECKUI BECTHUK MHDOPM LIMOHHbLIX TEXHONOMMIA, MEX HUKW 1 onTukun, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

741

Software restructuring models for object oriented programming languages using the fuzzy based clustering algorithm

to reduce its complexity. To accomplish this program
restructuring, we used the sample code written in Java for
the experiment. Then, the member variable and member
function that are present in the sample source code are
extracted. The next step implies that the member variables
directly or indirectly associated with the member function
are extracted using frequent usage pattern extraction
technique. The extracted and based on FUP member
function is represented in vector form. Subsequently,
the similarity existing between the member function is
evaluated based on cohesion metrics. After that on the basis
of the cohesion metric, the member functions which are
responsible for similar activity are grouped into clusters
using the fuzzy c-means clustering algorithm. Finally, the
output obtained as a result of the clustering algorithm is fed
as an input into refactoring approach to achieve an effective
software system. The performance of the proposed software
restructuring model can be evaluated using cohesion
metrics. The steps involved in this proposed methodology
are briefly explained below.

Extraction of member variables and member
functions.

— Extract M Vs like public, protected and private defined
in the class of software system. The extracted variables
help to identify frequent usage pattern for different MF
present in the software model.

— Extract MFs of all private and public variables apart
from the constructor, setter or getter functions defined
in the class of software.

Here constructors type MF is not at all extracted
because it initializes the objects as well as it belongs
to specific classes. So they cannot be moved or defined
among other classes. Likewise, the setter and getter are
unique functions in object-oriented software development
standards that permit access to the private MV of a class
(getter) and their initialization, i.e., setting MV to a known
value (setter). They help to retrieve and set public MVs
wherever in the software model. The private MFs cannot
be accessed directly outside the class, but they can be
directly called in the same class of public MFs. Because
of this, they may be functionally associated with further
public MFs. The extracted MVs and functions and their
corresponding class details are documented in a data
structure format. This aids to identify the corresponding
class during refactoring.

Frequent Usage Pattern extraction. At the second
phase of the proposed work, the algorithm evaluates FUPs
for each and every MF for all MVs. This FUP plays a
significant role in recognizing dependencies between
MFs. While refactoring the code, this form of dependency
information is utilized for improving the cohesion measure
of classes in a software system. The FUP is recognized by
means of a subset of MVs, which are frequently utilized
together by MFs in the designed software model. The
subset of FUP of a given member variable is denoted as
M;; through this, we can identify all other MVs directly
or indirectly. The indirect usage comprises MVs accessed
throughout the other MFs, which are called by M,. This
indirect usage does not contain recursive calls so that the
outcome is in the form of an infinite loop because of the
static system analysis, and their uses have been observed.

llustration of vector for member functions FUP. The
FUP is initialized as a vector of size (7c + n) for fining
MVs usage similarity between MFs. Here 7c represents
the total number of class and # is the total number of MFs
present in the designed software model. The vector format
is represented as a row-wise and column-wise matrix form.
In the vector format, 7c slots symbolize the classes and
define the total number of MVs of a class utilized by M.
Similarly, n represents the MVs which may be either 0 or
1. Where 1 in the MV slot denotes consequent MFs, which
use its consequent MV, and 0 indicates MFs, which do not
use its consequent MV. This must be determined under the
basis of the identified FUP for their consequent MFs. The
value of the vector becomes 0 when MF does not use any of
the MV of the classes accordingly in the software system.
The overall information will be utilized by the refactoring
mechanism.

Evaluating similarity based cohesive metrics. As
per knowledge, the clustering algorithm helps to cluster
the segments of codes. In clustering approaches, any two
clusters are grouped together on the basis of similarity
measures. Therefore, similarity measures should be
available for cluster analysis. So proposing the similarity
metric helps to point out the closeness measures of two
MFs contained in the value of vector space and this
information is used for the next step. Two MFs that have a
higher similarity metric are regarded to be interrelated with
each other. In other words, to find similarity among MF
pairs, the similarity metric is introduced, which measures
the relatedness between MFs. In our case, a new similarity
measure FUP is studied and evaluated. The following
paragraph describes the cohesion metric working principle.

For improving the cohesion measure, FUP is formulated
as:

Similarity mytric (M;, M;) =
|luse pattern (M;) N use pattern (M))|

luse pattern (M;) U use pattern (Mj)|'

Thus, the similarity metric was evaluated based on the
FUP set defined above. It is represented as the proportion
of the total number of the same MVs utilized to the total
number of unique MVs retrieved by both MFs. This type
of information can be used for refactoring to improve the
cohesion of classes in a software framework. The obtained
results are used as the input to the proposed clustering
algorithm. Increasing cohesion of the class will eventually
reduce the coupling due to refactoring.

Coding with an example. To the best of our knowledge,
the FUP metric analysed in the proposed solution performs
better than all other metrics. So, an illustration is presented
below to investigate the computation of the FUP strategy
that helps to verify and validate our cohesion improvement
approach. It also defines how FUP is interrelated by
modularization and shows improved cohesion in object-
oriented classes of software design. The sample source
code written in Java programming language is given below
in Table 1.

The original sample code given in the above table
comprises four classes, namely CL;, CL,, CL; and CL,.
At the method level, the FUP is processed, and it includes

742

H y4YHO-TexHM4Yeckuii BECTHUK MHDOPM LMOHHbIX TEXHONOMMIA, MEX HUKWU 1 onTukn, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

S. Bobde, R. Phalnikar

Table 1. Sample source code

Class 1 Class 2 Class 3 Class 4
public Class CL, public Class CL, public Class CL; public Class CL,
{ { { {
inta, b intd, e, f; intg, h; int 7, j;
public void MF () public void MF5() public void MF5() public void MFg()
{ { {
int ¢; int ¢ int ¢; CL{ ¢ = newCL,();
c=axb c=d+e; c=g+4 c.MF5();
j H j }
public void MF,() public void MF,() } public int MF4()
{ { {
int ¢; int c; return (7 +);
c=b+06; exf Public int MFg()
) c=— {
} return (i —j);
})
: }

a sequence of the unordered MV names utilized by its
equivalent MF indirectly or directly called to different
methods of the classes. The method MF; from CL, class
is described and the FUP is a set{a, b}; the same class
consists of another one method MF,(), and its FUP is
set{h} and considering the second class CL, which consists
of two methods MF5() and MF,(), for that FUP is s set of
{d, e} and {e, f} respectively. Similarly, the FUP of every
MF is computed in the software framework. The ideology
adopted here is that if any MF shares a set of common MFs,
they should be put together to fulfil conceptual dependency.
Afterwards, merging and splitting (bad code) is done for
the internal structure of classes which is shown in the
subsequent Table 2.

In the modified Java code, classes CL, and CL; are
merged together which forms CL, CL;. Next to this, the
final class CL, is split into Class CL, 1 and Class CL, 2.
This modified code comprises eight MFs and nine MVs.
MF() uses a and b member variables, whereas MF,()

utilizes member variable b. Likewise, all MFs contain
their corresponding MVs, and all other FUP are computed
for the rest of MFs, which vary from MF5() to MFg(). This
FUP is denoted in the vector form where 0 denotes the
non-usage of MV and | denotes the usage of MV. This
vector encodes the information of a total number of MVs
accessed for the corresponding class by means of MF. This
information is useful for restricting the software model in
the final stage. After the vector representation, a similarity
measure is computed between the pair of MFs. It helps
to calculate the relatedness between MFs as the ratio of
similar accessed MVs (FUP intersection) to the sum MV
(FUP union) accessed uniquely by both MFs.

From the example code, the similarity between a
member function MF|() and MF,() is 2 (0.5). Likewise,
the similarity between the other two member functions
MF () and MF5() is 0/4 (0). These similarity values are
evaluated using the metric formula and are denoted in a
square matrix M of size 8 x 8. This obtained matrix is given

Table 2. Modified sample source code

Class 1 Class 2 Class 3 Class 4
public Class CL,; public Class CL, CL, public Class CL,_1 public Class CL,_2
{ { { {
int a, b; intd,e,f, g, h; int i, j; int i, j;
public void MF () public void MF5() public void MF() Public int MFg()

{ { { {
int ¢; intc; CLy 1 c=newCL, 1();
c=axb c=d+e; CL{ ¢ = newCL4(); return (c.MF5());
} } c.MF5(); }
public void MF5() public void MF4() } }
{ { public int MF5()
int ¢; int ¢; return (7 +j);
c=b+06; exf }
} ¢ 27 }
: }
public void MF5()
{
ntc;
c=g+4;
}
}

H y4HO-TEXHUYECKUI BECTHUK MHDOPM LIMOHHbLIX TEXHONOMMIA, MEX HUKW 1 onTukun, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5 743

Software restructuring models for object oriented programming languages using the fuzzy based clustering algorithm

as the input to the next phase of the fuzzy based clustering.
The proposed clustering algorithm gives four clusters as
outputs which are {MF, MF,}, {MF5, MF,, MF¢}, {MF’s},
{MF;, MFg}. In the clustering outcome, MF’s is the method
to be found in class CL, CLs, and it is placed separately
after performing the merging operation. Likewise, MFs
of split class CL, 1 and class CL, 2 are located in the
same cluster as {MF,, MFy}. Therefore, the FUP plays a
significant role in dependency identification between MFs.
This identified dependency data is used during refactoring
for improving classes’ cohesion in the software model.

Clustering based on fuzzy c-means approach. The
created matrix is fed as the input to the clustering strategy.
The clustering phase implements the proposed fuzzy
c-means clustering algorithm (FCM). It reduces the chance
of reusability and maintenance; then it will obtain low
cohesion. FCM is a suitable approach for obtaining high
cohesion where a separate class is defined for all jobs to
execute a specific job. Also, its clustering process depends
directly on the distance measure. It is the combination
of the c-means strategy by handling fuzzy data. In this
clustering technique, at first, each MF is assigned to a
separate cluster which forms m number of clusters on the
basis of distance among the cluster centre and MFs. The
reason behind choosing the FCM technique is that it has a
high grouping capacity and offers the best outcome for the
overlapped project. In the k-means clustering approach,
data points belong to one cluster centre, whereas in the
proposed FCM method, the data point may belong to
more than one cluster through the membership function.
Therefore, FCM performs comparatively better than the
k-means algorithm.

The working principle is shortly given as follows:

Step 1: Initialize the created matrix, which is
represented as Y= {yy, ¥5, V3, ..., ¥, and the set of clusters
is also initialized as V' = {v, v5, v3, ..., V,.}.

Step 2: Select the cluster centres randomly.

Step 3: Evaluate the fuzzy membership function by
1

(2/m-1)*
2
=1 d,»

Step 4: The fuzzy centre is calculated by vi_;, .=

(é(uy)”’yf) 'C

Wy =

: (é(uy)’”) |

Step 5: Repeat the above steps (3) and (4) until the
minimum objective is reached.
The objective function is formulated as

n c
T, v) = XX (i - v,
i=1j=1
where ||y; — ij2 defines Euclidean distance between i — th
and j — th cluster centre.

After this, merge any two close MFs showing the
highest similarity value into a single cluster which forms
m — 1 total clusters. Until we get the single cluster with all
MFs, the process of merging takes place. The output of the
clustering technique is a set of clusters. This set of clusters

helps to aid the software designers in discovering a low
cohesive measure. Then software designers decompose
them into numerous fragments of code and compose
them into new functions. The objects in each cluster have
higher relatedness than the objects in dissimilar clusters.
As information gained from the proposed research,
it is important to improve the software systems design
by refactoring during the emergence of object-oriented
software systems. Refactoring aims to change a software
system so that it not only modifies the performance of the
external code but also improves its internal structure.

Refactoring model. The final stage of the proposed
work focuses on the refactoring for the obtained clusters.
The obtained cluster is taken as the input for refactoring,
which is a highly related set of MFs. As much as possible,
the highly related clusters should be present together
for enhancing the cohesion measure and programming
frameworks internal structure. By moving MFs of
corresponding MVs, the refactoring of the source code
is done efficiently. For refactoring, different approaches
are utilized, which are move methods, class extraction
and class extraction with its inheritance, etc. The main
advantage of the proposed model is that refactoring can be
achieved in multiple ways. So combing different methods,
our refactoring model works based on the following three
cases:

Case 1: First, check if each method in a cluster can be
grouped into a new class based on the sharing of MVs with
other methods.

Case 2: Or else, it attempts to move methods to previous
classes depending on the relatedness value for achieving the
cohesion of the classes concerned.

Case 3: At last, if the defined two cases are not
feasible, due to high sharing of MVs between the
methods and their non-movement nature (because MVs
cannot be copied directly from one class to another with
the methods), therefore the technique groups methods
of a cluster in a new cluster along with inheritance by
defining a new base class. That base class comprises all
the MVs which are shared. This can be done for preserving
the software integrity. These steps are illustrated in the
following table.

Thus, the benefit of the proposed method is likely
to increase the effectiveness of the software system by
improving its cohesion measure.

Experiments and discussion

Several experiments were conducted to verify the
proposed procedure and explain how the sample projects
can be written differently. The entire methodology was
tested with the metrics like cohesion, accuracy and
time. As mentioned earlier, when the cohesion of a class
increases, its coupling automatically decreases. The
present implementation is written in Java. Moreover, the
technology can also be supported by other programming
languages.

Performance metrics. The cohesion metric used in this
methodology is the Lack cohesion in methods (LCOM),
Tight Class Cohesion (TCC), Loose Class Cohesion (LCC),

744

H y4YHO-TexHM4Yeckuii BECTHUK MHDOPM LMOHHbIX TEXHONOMMIA, MEX HUKWU 1 onTukn, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

S. Bobde, R. Phalnikar

Accuracy and time. The following notes describe the
working principle of those metrics:

LCOM: LCOM metric defines the number of pair of
methods in the class using several instance variables in
common. Assume that M represents the pairs of methods
without shared instance variables and N defines the pairs
of methods with shared instance variables. Then, LCOM
is formulated as:

(M| —INT; if M| > |N]
0; if|M|—|N| is negative

TCC: TCC is defined as the relative number of common
methods connected directly. Assume that a class contains
M number of common methods. Let MP represent the
maximum number of common pairs of methods and is
given as MP = [M x (M — 1)]/2. The mathematical notation
of TCC is given as follows:

TCC = MDC/MP.

LCOM =

Here MDC defines the number of direct connections among
common methods.

LCC: LCC is defined as the relative number of common
methods connected directly or indirectly and is formulated
by:

LCC = MIC/MP.

Here MIC term denotes the number of direct or indirect
connections among common methods.

The following sub-sections elaborate on the outcome
of these experiments.

Evaluation based on doc MGR project.

Meanwhile, the values obtained after clustering are
higher than the ones before clustering for total lines,
representing the total number of member functions and
member variables. Also, the cohesion value obtained by
LCC and TCC is high for the proposed approach, and the
LCOM value obtained is lesser for the proposed method.
As we know, TCC and LCC scores range from 0 (the least

cohesive) to 1 (the most cohesive). And if the LCOM
measure obtains lesser value means, the cohesion measure
will be better. Likewise, the LCC value is always greater
than TCC. Here it is clear that cohesion is improved
after the refactoring, then automatically coupling gets
minimized after performing the refactoring. Following
this performance evaluation, we performed a comparison
between proposed refactoring and existing refactoring
method. Table 4 illustrates the comparative analysis carried
out between the proposed and conventional refactoring
techniques.

The comparison carried out between the proposed and
conventional refactoring method is displayed in Table 3.
The analysis revealed that cohesion or coupling measure
are improved using the proposed refactoring approach
compared with conventional methods. This is proved
through evaluating some of the cohesion metrics like LCC,
TCC and LCOM. The obtained values for these cohesion
metrics are lower than the ones for the existing approaches.
Finally, based on this study, it is shown that the improved
cohesion is attained using the proposed refactoring model
for program restructuring.

Conclusion and future work

This work aims to provide automated assistance to
identify low-cohesive or poorly-structured functions and to
provide refactoring recommendations to software designers
to guide their refactoring operations. For improving
cohesion performance, initially, member variables and
member functions were extracted, and then their frequent
usage pattern structures based on the dependencies between
member functions were extracted. Then fuzzy c-means
based clustering technique was proposed for refactoring
to acquire a good quality software system. The main
advantage of the proposed clustering algorithm is that each
MF is assigned to a separate cluster. It results in better
usability and maintenance, which causes the lowest time,
cost, and effort. The proposed methodology is executed

Table 3. Comparison before and after clustering

Performance before clustering Clustering by the proposed FCM
Total Lines 11 862 16 567
Total No. of Member Function 244 332
Total No. of Member Variable 62 84
Lack cohesion in methods (LCOM) 2448.0 1871.0
Loose Class Cohesion (LCC) 0.842 1.0
Tight Class Cohesion (TCC) 0.817 0.936

Table 4. Analysis carried out between the proposed and conventional refactoring approach for program restructuring

Performance metric Move Method Extract Subclass Refactoring based Refactoring basec:l on the proposed
Refactoring [22] Refactoring [23] on modularity [15] fuzzy clustering algorithm
TCC 0.658 0.63 0.33 0.817
LCC 0.699 0.66 0.78 0.842
LCOM 3585 2566 2356 1871

H y4HO-TEXHUYECKUI BECTHUK MHDOPM LIMOHHbLIX TEXHONOMMIA, MEX HUKW 1 onTukun, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

745

Software restructuring models for object oriented programming languages using the fuzzy based clustering algorithm

in object-oriented programming languages and was tested
with existing algorithms to show the superiority of the
proposed method.

Future scope

In future, we plan to use hybrid clustering approaches
that will help further to decrease computation time. Another
research direction includes various types of refactoring,
such as Rename, to be automatically handled by the
proposed model.

References

1. Keshta .M. Software refactoring approaches: A survey. International
Journal of Advanced Computer Science and Applications, 2017,
vol. 8, no. 11, pp. 542-547.

2. Alkhalid A., Alshayeb M., Mahmoud S.A. Software refactoring at the
class level using clustering techniques. Journal of Research and
Practice in Information Technology, 2011, vol. 43, no. 4, pp. 285—
306.

3. Srinivas C., Radhakrishna V., Rao C.V.G. Clustering software
components for program restructuring and component reuse using
hybrid XNOR similarity function. Procedia Technology, 2014,
vol. 12, pp. 246-254. https://doi.org/10.1016/j.protcy.2013.12.482

4. Fokaefs M., Tsantalis N., Chatzigeorgiou A., Sander J. Decomposing
object-oriented class modules using an agglomerative clustering
technique. Proc. IEEE International Conference on Software
Maintenance (ICSM), 2009, pp. 93—101. https://doi.org/10.1109/
ICSM.2009.5306332

5. Lung C.H., Xu X., Zaman M., Srinivasan A. Program restructuring
using clustering techniques. Journal of Systems and Software, 2006,
vol. 79, no. 9, pp. 1261-1279. https://doi.org/10.1016/j.
j85.2006.02.037

6. Srinivas C., Rao C.V.G. A feature vector based approach for software
component clustering and reuse using k-means. Proc. International
Conference on Engineering and MIS (ICEMIS), 2015, pp. 1-5. https://
doi.org/10.1145/2832987.2833080

7. Naseem R., Magbool O., Muhammad S. Improved similarity
measures for software clustering. Proc. 15" European Conference on
Software Maintenance and Reengineering, 2011, pp. 45-54. https://
doi.org/10.1109/CSMR.2011.9

8. Bavota G., Gethers M., Oliveto R., Poshyvanyk D., De Lucia A.
Improving software modularization via automated analysis of latent
topics and dependencies. ACM Transactions on Software Engineering
and Methodology, 2014, vol. 23, no. 1, pp. 2559935. https://doi.
org/10.1145/2559935

9. Al Dallal J. Constructing models for predicting extract subclass
refactoring opportunities using object-oriented quality metrics.
Information and Software Technology, 2012, vol. 54, no. 10,
pp. 1125-1141. https://doi.org/10.1016/j.infsof.2012.04.004

10. Singh S., Kaur S. A systematic literature review: Refactoring for
disclosing code smells in object oriented software. Ain Shams
Engineering Journal, 2018, vol. 9, no. 4, pp. 2129-2151. https://doi.
org/10.1016/j.asej.2017.03.002

11. Wang Y., Yu H., Zhu Z., Zhang W., Zhao Y. Automatic software
refactoring via weighted clustering in method-level networks. /EEE
Transactions on Software Engineering, 2018, vol. 44, no. 3, pp. 202—
236. https://doi.org/10.1109/TSE.2017.2679752

12. Hegediis P., Kadar 1., Ferenc R., Gyimothy T. Empirical evaluation
of software maintainability based on a manually validated refactoring
dataset. Information and Software Technology, 2018, vol. 95, pp. 313—
327. https://doi.org/10.1016/j.infs0f.2017.11.012

13. Kebir S., Borne I., Meslati D. A genetic algorithm-based approach for
automated refactoring of component-based software. Information and
Software Technology, 2017, vol. 88, pp. 17-36. https://doi.
org/10.1016/j.infsof.2017.03.009

14. Han A.-R., Bae D.-H., Cha S. An efficient approach to identify
multiple and independent Move Method refactoring candidates.

Compliance with ethical standards

Funding: There is no funding provided to prepare the
manuscript.

Conflict of Interest: There is no conflict of interest
between the authors regarding the manuscript preparation
and submission.

Ethical Approval: This article does not contain any
studies with human participants or animals performed by
any authors.

Informal Consent: Informed consent was obtained
from all individual participants included in the study.

Jluteparypa

1. Keshta I.M. Software refactoring approaches: A survey // International
Journal of Advanced Computer Science and Applications. 2017. V. 8.
N 11. P. 542-547.

2. Alkhalid A., Alshayeb M., Mahmoud S.A. Software refactoring at the
class level using clustering techniques // Journal of Research and
Practice in Information Technology. 2011. V. 43. N 4. P. 285-306.

3. Srinivas C., Radhakrishna V., Rao C.V.G. Clustering software
components for program restructuring and component reuse using
hybrid XNOR similarity function // Procedia Technology. 2014. V. 12.
P. 246-254. https://doi.org/10.1016/j.protcy.2013.12.482

4. Fokaefs M., Tsantalis N., Chatzigeorgiou A., Sander J. Decomposing
object-oriented class modules using an agglomerative clustering
technique // Proc. IEEE International Conference on Software
Maintenance (ICSM). 2009. P. 93—101. https://doi.org/10.1109/
ICSM.2009.5306332

5. Lung C.H., Xu X., Zaman M., Srinivasan A. Program restructuring
using clustering techniques // Journal of Systems and Software. 2006.
V. 79.N 9. P. 1261-1279. https://doi.org/10.1016/.jss.2006.02.037

6. Srinivas C., Rao C.V.G. A feature vector based approach for software
component clustering and reuse using k-means // Proc. International
Conference on Engineering and MIS (ICEMIS). 2015. P. 1-5. https://
doi.org/10.1145/2832987.2833080

7. Naseem R., Magbool O., Muhammad S. Improved similarity
measures for software clustering // Proc. 15" European Conference
on Software Maintenance and Reengineering. 2011. P. 45-54. https:/
doi.org/10.1109/CSMR.2011.9

8. Bavota G., Gethers M., Oliveto R., Poshyvanyk D., De Lucia A.
Improving software modularization via automated analysis of latent
topics and dependencies // ACM Transactions on Software
Engineering and Methodology. 2014. V. 23. N 1. P. 2559935. https://
doi.org/10.1145/2559935

9. Al Dallal J. Constructing models for predicting extract subclass
refactoring opportunities using object-oriented quality metrics //
Information and Software Technology. 2012. V. 54. N 10. P. 1125~
1141. https://doi.org/10.1016/j.infsof.2012.04.004

10. Singh S., Kaur S. A systematic literature review: Refactoring for
disclosing code smells in object oriented software // Ain Shams
Engineering Journal. 2018. V. 9. N 4. P. 2129-2151. https://doi.
org/10.1016/j.asej.2017.03.002

11. Wang Y., Yu H., Zhu Z., Zhang W., Zhao Y. Automatic software
refactoring via weighted clustering in method-level networks // IEEE
Transactions on Software Engineering. 2018. V. 44. N 3. P. 202-236.
https://doi.org/10.1109/TSE.2017.2679752

12. Hegedts P., Kadar 1., Ferenc R., Gyimothy T. Empirical evaluation
of software maintainability based on a manually validated refactoring
dataset / Information and Software Technology. 2018. V. 95. P. 313—
327. https://doi.org/10.1016/j.infs0f.2017.11.012

13. Kebir S., Borne 1., Meslati D. A genetic algorithm-based approach for
automated refactoring of component-based software // Information
and Software Technology. 2017. V. 88. P. 17-36. https://doi.
org/10.1016/j.infsof.2017.03.009

14. Han A.-R., Bae D.-H., Cha S. An efficient approach to identify
multiple and independent Move Method refactoring candidates //
Information and Software Technology. 2015. V. 59. P. 53—66. https:/
doi.org/10.1016/j.infsof.2014.10.007

746

H y4YHO-TexHM4Yeckuii BECTHUK MHDOPM LMOHHbIX TEXHONOMMIA, MEX HUKWU 1 onTukn, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

S. Bobde, R. Phalnikar

Information and Software Technology, 2015, vol. 59, pp. 53-66.
https://doi.org/10.1016/j.infsof.2014.10.007

15. Rathee A., Chhabra J.K. Restructuring of object-oriented software
through cohesion improvement using frequent usage patterns. 4CM
SIGSOFT Software Engineering Notes, 2017, vol. 42, no. 3, pp. 1-8.
https://doi.org/10.1145/3127360.3127370

16. Alkhalid A., Alshayeb M., Mahmoud S. Software refactoring at the
function level using new Adaptive K-Nearest Neighbor algorithm.
Advances in Engineering Software, 2010, vol. 41, no. 10-11, pp.
1160-1178. https://doi.org/10.1016/j.advengsoft.2010.08.002

17. Rao A.A., Reddy K.N. Identifying clusters of concepts in a low
cohesive class for extract class refactoring using metrics supplemented
agglomerative clustering technique. International Journal of
Computer Science Issues, 2011, vol. 8, issue 5, no. 2, pp. 185-194.

18. Wang Y., Yu H., Zhu Z., Zhang W., Zhao Y. Automatic software
refactoring via weighted clustering in method-level networks. /EEE
Transactions on Software Engineering, 2017, vol. 44, no. 3, pp. 202—
236. https://doi.org/10.1109/TSE.2017.2679752

19. Rathee A., Chhabra J.K. Clustering for software remodularization by
using structural, conceptual and evolutionary features. Journal of
Universal Computer Science, 2018, vol. 24, no. 12, pp. 1731-1757.

20. Alizadeh V., Kessentini M. Reducing interactive refactoring effort via
clustering-based multi-objective search. ASE 2018 — Proc. of the 3314
ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp.464-474. https://doi.
org/10.1145/3238147.3238217

21. Bobde S., Phalnikar R. Restructuring of object-oriented software
system using clustering techniques. Proceeding of International
Conference on Computational Science and Applications, Springer,
2020, pp. 419-425. https://doi.org/10.1007/978-981-15-0790-8 41

22. Al Dallal J. Predicting move method refactoring opportunities in
object-oriented code. Information and Software Technology, 2017,
vol. 92, pp. 105-120. https://doi.org/10.1016/j.infsof.2017.07.013

23. Al Dallal J. Constructing models for predicting extract subclass
refactoring opportunities using object-oriented quality metrics.
Information and Software Technology, 2012, vol. 54, no. 10,
pp. 1125-1141. https://doi.org/10.1016/j.infsof.2012.04.004

Authors

Sarika Bobde — Associate Professor, MIT World Peace University, Pune,
Maharashtra, 411038, India, [§§ 57193133803, https://orcid.org/0000-0002-
6693-1364, sarikabobde27@gmail.com

Rashmi Phalnikar — Research Scholar, MIT World Peace University,
Pune, Maharashtra, 411038, India, §§26436009300, https://orcid.org/0000-
0002-2004-7944, rashmi.phalnikar@mitwpu.edu.in

Received 14.05.2021
Approved after reviewing 16.09.2021
Accepted 11.10.2021

15. Rathee A., Chhabra J.K. Restructuring of object-oriented software
through cohesion improvement using frequent usage patterns // ACM
SIGSOFT Software Engineering Notes. 2017. V. 42. N 3. P. 1-8.
https://doi.org/10.1145/3127360.3127370

16. Alkhalid A., Alshayeb M., Mahmoud S. Software refactoring at the
function level using new Adaptive K-Nearest Neighbor algorithm //
Advances in Engineering Software. 2010. V. 41. N 10-11. P. 1160—
1178. https://doi.org/10.1016/j.advengsoft.2010.08.002

17. Rao A.A., Reddy K.N. Identifying clusters of concepts in a low
cohesive class for extract class refactoring using metrics supplemented
agglomerative clustering technique // International Journal of
Computer Science Issues. 2011. V. 8. Issue 5. N 2. P. 185-194.

18. Wang Y., Yu H., Zhu Z., Zhang W., Zhao Y. Automatic software
refactoring via weighted clustering in method-level networks // IEEE
Transactions on Software Engineering. 2017. V. 44. N 3. P. 202-236.
https://doi.org/10.1109/TSE.2017.2679752

19. Rathee A., Chhabra J.K. Clustering for software remodularization by
using structural, conceptual and evolutionary features // Journal of
Universal Computer Science. 2018. V. 24. N 12. P. 1731-1757.

20. Alizadeh V., Kessentini M. Reducing interactive refactoring effort via
clustering-based multi-objective search // ASE 2018 — Proc. of the
33rd ACM/IEEE International Conference on Automated Software
Engineering. 2018. P. 464-474. https://doi.
org/10.1145/3238147.3238217

21. Bobde S., Phalnikar R. Restructuring of object-oriented software
system using clustering techniques // Proceeding of International
Conference on Computational Science and Applications. Springer,
2020. P. 419-425. https://doi.org/10.1007/978-981-15-0790-8_41

22. Al Dallal J. Predicting move method refactoring opportunities in
object-oriented code // Information and Software Technology. 2017.
V. 92. P. 105-120. https://doi.org/10.1016/j.infs0f.2017.07.013

23. Al Dallal J. Constructing models for predicting extract subclass
refactoring opportunities using object-oriented quality metrics //
Information and Software Technology. 2012. V. 54. N 10. P. 1125
1141. https://doi.org/10.1016/j.infsof.2012.04.004

ABTOpBI

Booage Capuxa — pouent, llIkona KOMIBIOTEPHOH HIJKEHEPHU U TEX-
Hosnoruii, MIT — Bcemupnsiii yuuBepcuret, [lyna, Maxapamrpa,
411038, Vnmus, {§ 57193133803, https://orcid.org/0000-0002-6693-1364,
sarikabobde27@gmail.com

IIxaasHukap Pammu — uccienosarens, [llkona KoMIbOTEPHON
uHxeHepuu u texnonoruit, MIT — Bcemupuslii yausepcuret, [lyHa,
Maxapamirpa, 411038, Muans, B 26436009300, https://orcid.org/0000-
0002-2004-7944, rashmi.phalnikar@mitwpu.edu.in

Cmamus nocmynuna 6 peoakyuto 14.05.2021
0oobpena nocne peyensuposanus 16.09.2021
Ipunama xk newamu 11.10.2021

P 60T pocTynH no nuueH3un
Creative Commons
«Attribution-NonCommercial»

H y4HO-TEXHUYECKUI BECTHUK MHDOPM LIMOHHbLIX TEXHONOMMIA, MEX HUKW 1 onTukun, 2021, Tom 21, N2 5
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no 5

747

