Header menu link for other important links
Automated Dual-Channel Speech Enhancement Using Adaptive Coherence Function with Optimised Discrete Wavelet Transform
, Mahajan S.P.
Published in World Scientific
Volume: 21
Issue: 3
Voice quality enhancement is a significant method for any speech communication model. Speech Enhancement (SE) and noise reduction approaches can significantly improve the perceptual voice quality of a hands-free communication system and increase the recognition rates of automatic speech recognition systems. Speech communications in real-world cases require high-performance enhancement techniques for addressing the distortions, which can corrupt the intelligibility and quality of the speech signal. Recent portable devices generally incorporate several microphones that can be easily used for improving signal quality. This paper plans to present a novel dual-channel SE model using the coherence function and heuristic concepts. The adaptive coherence function relates to the dual-microphone SE approach suitable for smartphones with primary and reference microphones. With this improved signal, the enhancement is performed by optimising denoising using Discrete Wavelet Transform (DWT) by Adaptive wind speed-based Deer Hunting Optimization Algorithm (AWS-DHOA). The considered objective function depends on the quality measure called Perceptual Evaluation of Speech Quality (PESQ) score. From the results, the RMSE of the proposed model using AWS-DHOA is 39.8%, 45.5%, 53.8% and 45.5% minimised than GWO-CFD, WOA-CFD, CSA-CFD, and RDA-CFD, respectively, on considering the babble noise. Finally, the comparative analysis confirmed that the proposed method improves speech quality and intelligibility by comparing diverse algorithms when different noise types corrupt the speech. © 2022 World Scientific Publishing Co.
About the journal
JournalJournal of Information and Knowledge Management
PublisherWorld Scientific
Open AccessNo