Header menu link for other important links
Classification Methods to Improve Performance in Breast Cancer Screening
Published in Institute of Electrical and Electronics Engineers Inc.
Breast cancer is a very aggressive type of cancer with a very low median survival. Today the deaths of women in the age group 15-55 are increasing because of malignant cells are increasing in breast. For the death of women it is the main cause. So, the possibility of improvement is only the early diagnosis of patients. Machine Learning (ML) techniques can assist the physicians by expanding tools for detection at initial stage and analysis of breast cancer thus increasing the probability of patient's survival [1]. At present, mammography is the best imaging strategy utilized by radiologist for screening breast tumours. In this paper, author proposes a system using different classification method like Support Vector Machine (SVM), Naive Bayes, Decision tree and MLP (Multi-Layer Perceptron) for early detection of cancer. Propose system extracts the texture based features and shape based features using LBP, GLCM, Otsu, Compactness, Fourier Transform. The main focus of the presented work is on application of MLP for breast cancer classification. In addition medical images data has been used to improve accuracy. Proposed system will do the comparative study between both datasets by extracting the feature with and without removing pectoral muscles. © 2019 IEEE.
About the journal
JournalData powered by Typeset2019 Global Conference for Advancement in Technology, GCAT 2019
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.