
International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-6, March 2020 

1707  

 

Retrieval Number: F7689038620/2020©BEIESP 
DOI:10.35940/ijrte.F7689.038620 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Insights of JSON Web Token 

Pooja Mahindrakar, Uma Pujeri 

Abstract—In almost every organization where user sensitive 

data is available, security and privacy  of the data plays a vital 

role. As far as computer science is concerned, it is just a game of 

saving data in unrecognizable format and accessible to 

authorized person. User sensitive data mainly includes passwords 

which are required for the sessions but need to be handled and 

stored safely.As storage of these information is overhead in 

database, Tokens are generated which handles sessions and also 

self contains user details. One of such widely used stateless token 

is Json Web Token. This paper deals with the introduction, 

working and algorithms of Json web token. Also pros, cons, 

hacking possibilities, Proper usage and security measures of 

JWT are discussed.  

Keywords— token, authentication, JWT , security, privacy, 

sessions, encryption. 

I. INTRODUCTION  

Over the years, technology has evolved drastically. 
Internet has main impact on country's economy. We find 
many websites(one with static data) and web 
applications(one with dynamic data and user interactions) on 
internet.\cite{b3}These spread over a wide range right from 
Wikipedia where every single information is available to the 
huge shopping web applications like amazon,flipkart etc 
where huge financial transactions are involved. Also not to 
forget are various educational sites where paid and unpaid 
courses are available.In all these kinds, huge capital is 
involved digitally thus hacking by intruders is an obvious 
task. Hence security for these sites plays a crucial role in 
this era. 

Security over internet involves privacy,storage and 
validation of sensitive client information.Two terms are 
widely used when we talk about web security, one is 
authentication and the other is authorization. Authentication 
means verifying if the person is the one who he claims to 
be\cite{b1}.Authorization means verifying if the person is 
the one who has rights to access the requested information . 
Thus to achieve the two terms authentication and 
authorization, a term called 'token'\cite{b6} was introduced. 
Token is merely a piece of code containing client's sensitive 
information required for authentication and authorization 
before fetching any sensitive data from the web servers. 
This is required to avoid illegal access to sensitive data. 

'Token' usually is used as soon as a person logins into 
the website and ends as the client aborts the session.Such 
token are called session tokens.These tokens store client 
data into database and fetch details each time to validate the 
client.The major drawback of such tokens is the time .To 
secure each action of the client,database hits are involved 
which is a major overhead. Hence new token type is 
introduced called Json Web Tokens. These tokens self 
contain client sensitive data and database overhead are 
completely abolished.  

 
 

Revised Manuscript Received on February 15, 2020. 

Pooja Mahindrakar, School of Computer Engineering and 

Technology, MIT World Peace University, Pune, Maharashtra, India.  E-

mail: mahindrakarpooja@gmail.com  
Dr. Uma Pujeri,  School of Computer Engineering and Technology, 

MIT World Peace University, Pune, Maharashtra, India.  E-mail: 

uma.pujeri@mitcoe.edu.in 

Thus these tokens are called light weight and stateless 
tokens. These tokens are stored either in local storage or in 
cookies. Whenever a client logins to the web application, 
token authenticates the client and each time during the 
session, if any actions are performed, tokens authorize the 
client without database overhead thus making more efficient 
security to web applications. These token are included in 
http header. Whenever any client requests sensitive data, 
http request is generated with JWT token in the header so as 
to ease authorization and timely fetch of requested 
data.\cite{b6} 

II. JSON WEB TOKEN 

Json Web Token(JWT) is a lightweight means of 
exchanging data between two parties so as to ease 
authentication,authorization and security. Each JWT 
statement is stored as  a json entity and  each Json entity i 
used as plaintext of Json Web Encryption or as a payload of  
JSON Web Signature (JWS) which allows claims to be 
digitally secured and authenticated with the Message 
Authentication Code (MAC). 
A few years ago, a ‘token’ was only a string with no 
inherent value before the revolution of JWT, e.g. 
2pWS6RQmdZpE0TQ93X. This token was later checked in 
a server where token statements were stored. The drawback 
of this approach is that each time the token is used, database 
access (or a cache) is required. 
Now a days, JWTs encode the statements and check their 
own statements (by signing). Thus stateless(read: self-
contained, don't rely on anyone else) short-lived JWTs are 
evolved. There is no need of database. Thus Database 
burden is eliminated and design is simplified because only 
the server that issues the JWTs has to think about entering 
the database / persistence layer (the refresh token ). 

A. JWT guidelines 

 The JWT must always use correct signature scheme. 

 If data is sensitive, encryption should be done. 

 Jwt requires proper key management. 

 If jwt used for sessions, risk can be introduced. 

B. Components of JWT 

Json Web Tokens are never encrypted but are encoded 
with base 64(UTF-8). JWT consists of three parts, 
header,payload and signature. Each part is separated by full 
stop(.) and encoded independently. that means header alone 
if tried to decode base 64, valid output is obtained. not 
necessary to consider entire token for decode. Part by part is 
valid.Let us understand each component of json web token 
in details.\cite{b1} 
1)  Header: First component of json web token is header. It 
consists of information viz algorithm, token type etc. 
Algorithm type varies from symmetric HS256 to 
asymmetric RS256 depending upon the usage. this bundle is 
encoded in base 64 format and placed as a first component 
of jwt token. 
 
 
 
 



 

Insights of JSON Web Token 

1708  
Retrieval Number: F7689038620/2020©BEIESP 
DOI:10.35940/ijrte.F7689.038620 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

JSON Header Format: 
{ 
"alg" : "RS256", 
"type":"JWT" 

      }   
2) Second component of json web token is payload. It 
consists of information viz client id, company id,access right 
of the token and the expiry date of the token.This bundle 
also is encoded in base 64 format and placed as second 
component of jwt token.Json Payload format: 

{ 
   "sub": "0987654321", 
   "name": "Joe", 
   "iat": 9875456678 

 } 
3) JSON Signature: Third component of Json web token is 
signature. Both header and payload are bounded together 
with a secret key to a signature.This signature maintains the 
integrity of the token.JSON Signature Format: 

 HMACSHA256( 
   base64UrlEncode(header) + "." + 
   base64UrlEncode(payload), 

 ) secret base64 encoded 
Authorization Bearer: A Bearer token is only an arbitrary 
string,used for permission. Bearer token can be jwt when jwt 
is used for authorization. 

eyJhbGciOiJbcEcbyjn6kbRghuR843Rfh6t89Rt709u9.ey
3ORT4tfvbR843Rfh6t8Tgbj578EnjyTnhyufQ.SftykmR843
Rfh6t8bhj3DY4ugbmDgjhvhy46t87FD 

Types of Signature: 

1) Symmetric signature :This signature is produced using 
HMAC function and verified using only one secret key.Such 
signatures work well within same application. 
Asymmetric signature :This signature uses dual keys one is 
secret key used for signing and other is public key used for 
verification. 

III. RELATED WORK 

In the publication "Token based authentication using 
Json web-token on SIKASIR RESTful web 
service"\cite{b1}, author explains the basic of Json Web 
Token and its structure also describes the usage of JWT in 
Sikasir 

(SME) model."A survey:Token-Based vs Session-Based 
Authentication"\cite{b2}, author explains the evolution of 
stateless token over session based token with some details of 
Json Web Token. 

"OAuth 2.0 Authorization Framework"\cite{b3} the 
author explains the OAuth framework in brief and describes 
how JSON web token is used for token-based authorization 
and in the publication "OAuth 2.0 Authorization 
Framework"\cite{b5} Bearer Token, authorization using 
JWT token as bearer token is described ..The paper 
"Simplified Authentication and Authorization for RESTful 
Services in Trusted Environments"\cite{b7} describes 
authentication and authorization in restful applications. "The 
OAuth 2.0 Authorization"\cite{b9} the author describes the 
value of the Bearer variable that has a token on it, attached 
to the application header that is used by the user. 

IV. CRYPTOGRAPHIC ALGORITHMS FOR JWT 

Jwt contents are only encoded in base64 format. Those 

are not encrypted! This reason any base64(UTF8) decoder 

can easily display the contents of the Jwt. Jwt can be 

decoded in parts that is header, payload and signature can be 

decoded separately using a base64 decoder.As decoding task 

can be easily performed, including sensitive data into token 

is at high risk.Hackers can easily obtain personal sensitive 

data and misuse it in illegal ways. Thus no sensitive data 

must be included in the payload part of Jwt. When we try to 

decode the signature part of Jwt, we cannot see the contents 

of those instead we can see a binary file downloading which 

contains cryptographic details. On the other hand one can 

directly decode and see contains of header and payload. The 

cryptographic signature is generated using a secret 

passphrase which is shared only between sending and 

receiving parties. If sharing is involved it is a type of 

symmetric signature if secret is not shared it is asymmetric 

signature where public and private keys are used to play the 

scenario. JWT does  not require third party or database to 

validate the person who he claims to be, instead it self 

validates making itself stateless. 

A. The common algorithms used by JWT 

 HS256 (symmetric signature): This is a combination of 

two hashing algirithms namely, HMAC and SHA256 

along with a shared secret key.Most common algorithm 

used in JWt is HMAC. Hash-Based Message 

Authentication Codes (HMACs)  are a collection of 

shared key based signing algorithms . These include hash 

function like SHA256. 

 RS256(Asymmetric signature): This is a combination of 

RSA and SHA-256 along with a secret key which is 

private and unshared. Both RSA and ECDSA are digital 

signature and asymmetric encryption algorithms. With 

these asymmetric algorithms the possibility of creating a 

new one for decrypting or verifying a message is least. 

This is key for certain use cases.  The main difference 

between RSA and ECDSA is speed and key size. ECDSA 

requires small sized keys to achieve the same level of 

security as RSA. This makes it a great choice for small 

JWTs. RSA, however, is usually faster than ECDSA. 

 Algorithm can also be“None” which means that no 

signature validation takes place. This is a major key for 

any hacker to bypass validation process. 

B. Working of JWT 

 

 
 

 When user signs up initially into a website, all his details 

containing his username, contact number etc are entered. 

Later password is set.  

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-6, March 2020 

1709  

 

Retrieval Number: F7689038620/2020©BEIESP 
DOI:10.35940/ijrte.F7689.038620 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Many a times, sign up is done using google, facebook or 

other account. 

 One the user sign in the website at the database end, all 

the user details are authenticated and verified. On 

validation, JWT token is generated and token is sent to the 

user. 

 When user want to make call to any API, He has to pass 

JWT in the http header and send to application server. 

 Application server validates the token. If validated, then 

user is authorized to access the requested data thus the 

data is returned to the user. 

 

 
JWT.io is a website which decodes any jwt token from 

base 64 to readable format. It displays the decoding result 

into three parts header,payload and signature. If any 

algorithm is involved in formation of the token, the 

algorithm details is displayed in the header part.The secret 

key used is kept secret and not included in jwt. Only those 

parties possessing secret key can verify the user.The 

integrity of jwt is maintained solely by the signature. Thus 

secret key of signature plays a vital role.If secret key is 

compromised, any intruder can modify details and reform a 

new jwt. 

V. PROS 

 JWT provides stateless validation: JWT self contains user 

details required for validation.It is termed stateless 

because jwt does not maintain any state as it provides self-

validation. 

 No need of memory or cpu time: For each validation, user 

details are not required to be fetched from database, thus 

memory and cpu time is saved.  

 No need of database: As Token itself store necessary user 

details, for every validation, database is needed.  

 Validation of sender for every http request when jwt is 

placed in http header: Whenever any http request is placed 

by the user, jwt from local storage or cookie is placed into 

http header and thus every step authorization is checked 

thus enhancing security to server. 

 Faster authentication and authorization: Termed faster 

because of self -validation only. 

 It can be used for session control: jwt are created during 

sign up but for each login it is active acting as a stateless 

session token. 

 Simpler to use if careful: JWT is easy to code but while 

placing payload data sensitivity of user information must 

be taken care. 

 

VI. CONS 

 Compromised Secret Key: Usually key rotation system is 

used for selecting secret key for jwt generation. Once 

secret key chain is compromised, tokens are easily 

hacked.  

 Cannot manage client from the server: If a user in any 

case wants to log out, we cannot simply delete token as in 

case of session token which is store in database. Also, we 

cannot delete user id from the table as it any create 

multiple dangling pointer in database.   

 Cannot push Messages to clients (Identifying clients from 

server): As we have no record about the logged-in clients 

on the DB end, we cannot push messages to all the clients.  

 Cryptography algorithm can be deprecated: JWT relies 

completely on the Signing algorithm. Now, though it is 

not frequent, but in the past many Encryption/Signing 

algorithms have been deprecated.  

 Data Overhead: JWT tokens are longer than that of a 

normal Session tokens. We have to very carefully store 

information into jwt as it linearly increases in length. And, 

if length increases, overhead is created for every 

validation. Remember, each request needs the token in it 

for request verification.   

 Complicated to understand: JWT uses cryptography 

Signature algorithms to verify the data and get the user-id 

from the token. 

VII. ATTACKING JWT 

 Exposure of sensitive data: JWT.io helps to decode the 

json web token. If user sensitive information is stored in 

the token,attacker can decode the token and misuse the 

information obtained.  

 Change in the signing algorithm: JWT header if contains 

algorithm especially asymmetric algorithm like RS256( 

which contains private key as secret key to create 

signature and public key to verify the signature),then it 

can be changed to HS256(symmetric algorithm) where 

publicly available public key can be used as secret key to 

generate and verify the signature. 

 Changing algorithm to none: Most of the JWT's accept 

algorithm as none by default where no signature is 

present. Hackers try to eliminate the algorithm by 

introducing alg: none in the header. This may sometimes 

work to skip the jwt verification. 

 If we specify algorithm in the header and leave out 

signature part in the token, sometimes applications may 

consider the token as correctly signed. 

 compromising secret key: There are many tools that can 

brute force the HS256 signature on these tokens: 

o .NET implementation.  

o Python script (PyJWT) to do the decoding.  

o John the Ripper (a tool) 

VIII. SECURITY MEASURES 

 Always check if the algorithm is specified in JWT 
header. 

  Never load any extra user sensitive data in payload part 
of JWT other than the data required for authentication 
and authorization. 
 
 



 

Insights of JSON Web Token 

1710  
Retrieval Number: F7689038620/2020©BEIESP 
DOI:10.35940/ijrte.F7689.038620 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

 

 

 Always choose secret key very carefully so that brute 
force on the key should be difficult. 

 Always remember jwt is encrypted, it is only encoded 
and clearly visible to the ones who obtain the token. 

 Storage of JWT must be decided carefully based on the 
implementation requirements either in local storage or in 
cookies. 

 Try to make sure the the jwt you create should avoid 
accepting alg = "none" in the header. 

 Try to always keep token short as that overhead in time 
and space is reduced. 

 Try to know all the cryptography algorithms which are 
compatible with JWT and use the one that best suits your 
application. 

IX. RESULT 

Many JWT attacks were performed and vulnerabilities in 

JWT are noted. Firstly the none algorithm in JWT will 

disable signature verification thus leading to tampering of 

sensitively data. Then the jwt.io website clearly displays the 

user credentials which is hashed but yet visible and can be 

stolen. Later the secret key used for digital signature of JWT 

can be hacked using many tools. Thus secret key generation 

and storage should be given major importance. 

X. CONCLUSION & FUTURE WORK 

Due to the vulnerabilities of JWT, In spite of using all the 

security measures to use JWT tokens, There are many 

circumstances where the security measures may fail. Thus 

there is a need of CSRF tokens which take care of all the 

security flaws of JWT. 

Future work involves research in storage methods of JSON 

web token. Also the difference between JWT and CSRF 

token and how CSRF token overcomes vulnerabilities of 

JWT. 

ACKNOWLEDGMENT 

Sincere thanks to my guide Dr. Uma Pujeri for providing 

immense support in this research. Also, I thank Dr. Balaji 

Patil sir for helping me the best way possible.  

REFERENCES 

1. Muhamad Haekal,Eliyane ,"Token based authentication using Json 
web-token on SIKASIR RESTful web service". International 
Conference on Informatics and Computing (ICIC) IEEE(2016) 

2. Yjvesa Balaj,"A Survey: Token-Based vs Session-Based 
Authentication " Article September 2017 

3. Hardt,  D.:  “The  OAuth  2.0  Authorization  Framework.”  RFC  
6749, RFC Editor, October 2012.   

4. Yung Shulin,Wang Shaopeng,Hu Jeiping,Cai Hungwai, 
"Implementation on Permission Management Framework based on 
token through Shiro" 2017 International Conference on Computer 
Technology, Electronics and Communication (ICCTEC) 

5. Ch.Jhansi Rani ,SK.Shammi Munnisa "A Survey on Web 
Authentication Methods for Web Applications"(IJCSIT) International 
Journal of Computer Science and Information Technologies, Vol. 7 
(4) , 2016 

6. Xiang-Wen  Huang, Chin-Yun  Hsieh,  Cheng Hao Wu  and Yu  Chin 
Cheng, "A Token-Based User Authentication Mechanism  for Data 
Exchange in RESTful API” , vol. 00, no. , pp. 601-606,  2015, 
doi:10.1109/NBiS.2015.89   

7. Brachmann E., DittmannG., Schubert  KD. (2012)  “Simplified 
Authentication and Authorization for RESTful Services" in  G. (eds) 
Service-Oriented and Cloud Computing. ESOCC 2012.  Lecture 
Notes in Computer Science, vol 7592. Springer, Berlin,  Heidelberg.   

8. Obinna Ethelbert,Faraz Fatemi Moghaddam, Philipp Wieder, Ramin 
Yahyapour,"A JSON Token-Based Authentication and Access 
Management Schema for Cloud SaaS Application" 2017 IEEE 5th 
International Conference on Future Internet of Things and Cloud 

9. Jones, M.B., Hardt, D.:”The OAuth 2.0 Authorization " October 2012  

10. Jit dhulam,"Json Web Token In Django REST API" (article) 2018 

AUTHORS PROFILE 

Pooja Mahindrakar, was born in Vijayapura, 

India, She is currently pursuing her M.Tech from 

MIT World Peace University, Pune. She has 
worked as Google facilitator for 2 years. Published  

a research paper in deep learning. She is Gate 

qualified with Interests in: Artificial Intelligence, 
Machine Learning, Deep Learning, 

Communication Networks, CCNA, Cyber Security. 

Network  Management. 

 
Dr. Uma R. Pujeri, was born in Sangli, India, in 

1981. She has received M.Tech degree from PSG 

Tech college of Engineering Coimbatore in 2008. 

She has received doctorate degree from Anna 

University Chennai in May 2017. Her research area 

is computer network congestion control algorithm. 
She has worked as a Assistant Professor in Adithya 

College of Engineering Coimbatore for six years. 

Currently she is working as a Associate Professor in MIT College Of 
Engineering Pune Maharashtra. She has total 12 years of teaching 

experience. She is a Life Member of the Indian Society for Technical 

Education (ISTE). She has total 20 publications in International journal. 
 

http://jwt.io/

