Header menu link for other important links
MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud
Published in
Pages: 63 - 68
Recently, content based image retrieval (CBIR) has gained active research focus due to wide applications such as crime prevention, medicine, historical research and digital libraries. With digital explosion, image collections in databases in distributed locations over the Internet pose a challenge to retrieve images that are relevant to user queries efficiently and accurately. It becomes increasingly important to develop new CBIR techniques that are effective and scalable for real-time processing of very large image collections. To address this, the paper proposes a novel MapReduce neural network framework for CBIR from large data collection in a cloud environment. We adopt natural language queries that use a fuzzy approach to classify the colour images based on their content and apply Map and Reduce functions that can operate in cloud clusters for arriving at accurate results in real-time. Preliminary experimental results for classifying and retrieving images from large data sets were quite convincing to carry out further experimental evaluations. © 2012 IEEE.
About the journal
JournalProceedings of the 2012 12th International Conference on Hybrid Intelligent Systems, HIS 2012